• Title/Summary/Keyword: nasal epithelium

Search Result 55, Processing Time 0.026 seconds

Expression of Bitter Taste Receptors in Human Nasal Respiratory Epithelium

  • An, Jeong-Mi;Wu, Hee-Won;Kim, Hyun-Jun;Kim, Chang-Hoon;Moon, Seok-Jun
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The nasal cavity encounters various irritants during inhalation such as dust and pathogens. To detect and remove these irritants, it has been postulated that the nasal mucosa epithelium has a specialized sensing system. The oral cavity, on the other hand, is known to have bitter taste receptors (T2Rs) that can detect harmful substances to prevent ingestion. Recently, solitary chemosensory cells expressing T2R subtypes have been found in the respiratory epithelium of rodents. In addition, T2Rs have been identified in the human airway epithelia. However, it is not clear which T2Rs are expressed in the human nasal mucosa epithelium and whether they mediate the removal of foreign materials through increased cilia movement. In our current study, we show that human T2R receptors indeed function also in the nasal mucosa epithelium. Our RT-PCR data indicate that the T2R subtypes (T2R3, T2R4, T2R5, T2R10, T2R13, T2R14, T2R39, T2R43, T2R44, T2R 45, T2R46, T2R47, T2R48, T2R49, and T2R50) are expressed in human nasal mucosa. Furthermore, we have found that T2R receptor activators such as bitter chemicals augments the ciliary beating frequency. Our results thus demonstrate that T2Rs are likely to function in the cleanup of inhaled dust and pathogens by increasing ciliary movement. This would suggest that T2Rs are feasible molecular targets for the development of novel treatment strategies for nasal infection and inflammation.

A Case of Papilloma in the Nasal Cavity (비강내에 발생한 유두종 1례)

  • 김홍권;김성숙;김영복;박수만
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1981.05a
    • /
    • pp.12.2-12
    • /
    • 1981
  • The papilloma of the nose and the sinuses is uncommon benign neoplasm that was pro bably first described by Billroth in 1855 as a "villiform cancer": It may polypoid or papillomatous in the nose or sinuses and is frequently multiple. Clinically, there are 3types of the papilloma found in the nasal cavity and sinuses, vestibule, fungiform, inverting. The vestibular type is the keratotic lesion arise from the squamous epithelium lining the vestibule of the nose. The inverting type, which is covered by the columnar or metaplastic squamous epithelium is pliable, pink and tends to bleed quite easily. The fungiform type is covered by the stratified squamous epithelium which shows varying degree of cornification. It is more caulflow like than the inverting type and does not bleed easily. Recently, the authors experienced a case of the fungiform type papilloma which occupied right nasal cavity and nasopharynx. So, we reports the case, with review of the current brief literatures. A 55 year old man was admitted with the chief complaints of right nasal obstruction by the protruded movable mass on right nasal cavity, which was noticed about 7 months ago. The biopsy report revealed fungiform type papilloma.(length 18cm. width 2.5 cm. weight 41 gr.) The tumor mass was removed surgically through intranasal approach under the general anesthesia. Postoperative course was uneventful and the patient was discharged after 7 days hospitalization. No evidence of recurrence has been observed up to date.

  • PDF

Morphological studies on the vomeronasal organ of Korean native cattle and Korean native goats (한우 및 재래산양 서비기관의 형태학적 연구)

  • Mo, Ki-choul
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.3
    • /
    • pp.231-237
    • /
    • 1989
  • Morphological features of the vomeronasal organ of both Korean native cattle and Korean native goat were studied by gross, microscopic and histochemical examinations. Anatomical characteristics of the vomeronasl organ were similar in both Korean native cattle and Korean native goats. The vomeronasal organ is a tubular structure situated bilaterally at the base of the nasal septum, and enclosed by hyaline cartilage. Its lumen is semilunar to crescent in transverse sections. It join with the incisive duct through narrow duct. The lumen of the vomeronasal organ is lined with sensory and respiratory epithelia. The distribution pattern of vomeronasal mucosal epithelia varied by the position. In the anterior portion joining with nasal cavity, the lumen is lined with only respiratory epitheliu. In the middle portion, sensory epithelium appeared on the medial side, and respiratory epithelium on the lateral side. In the posterior, it is lined with sensory epithelium on the ventral side and lined with respiratory epithelium on the dorsal side. The vomeronasal gland composed of mucous and serous acini are distributed in the lamina propria under the respiratory epithelium, where venous sinuses are also well developed.

  • PDF

Functional Anatomy and Histology of the Olfactory Organ in Korean Eel Goby, Odontamblyopus lacepedii (Pisces: Gobiidae)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • For Odontamblyopus lacepedii with small and turbid eyes, the gross structure and histology of the olfactory organ, which is important for its survival and protection of the receptor neuron in estuarial environment and its ecological habit, was investigated using a stereo, light and scanning electron microscopes. Externally, the paired olfactory organs with two nostrils are located identically on each side of the snout. These nostrils are positioned at the anterior tip of the upper lip (anterior nostril) and just below eyes covered with the epidermis (posterior nostril). Internally, this is built of an elongated olfactory chamber and two accessory nasal sacs. In histology, the olfactory chamber is elliptical in shape, and lined by the sensory epithelium and the non-sensory epithelium. The sensory epithelium of a pseudostratified layer consists of olfactory receptor neurons, supporting cells, basal cells and lymphatic cells. The non-sensory epithelium of a stratified layer has swollen stratified epithelial cells and mucous cells with acidic and neutral sulfomucin. From these results, we confirmed the olfactory organ of O. lacepedii is adapted to its ecological habit as well as its habitat with burrows at the muddy field with standing and murky waters.

An Anatomical and Histochemical Study of the Olfactory Organ in Rice-fish Oryzias sinensis(Pisces: Adrianichthyidae) in South Korea (한국산 대륙송사리 Oryzias sinensis(Pisces: Adrianichthyidae) 후각기관의 해부 및 조직화학적 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.4
    • /
    • pp.223-228
    • /
    • 2016
  • The anatomy and histology of the olfactory organ in Oryzias sinensis was researched using a stereo microscope and light microscope. In the gross structure, the paired olfactory organs on the dorsal part of the head consist of two nostrils (a circular anterior nostril and a slit posterior nostril in a distance), a single olfactory chamber and a single accessory nasal sac. In the histological study, the epithelium of the olfactory chamber is classified into both sensory and non-sensory regions. The sensory epithelium consists of olfactory receptor neurons, supporting cells, basal cells and vesicles, and is islet in distributional pattern. The non-sensory epithelium is composed of stratified epithelial cells and two types of mucous cells (acidic and neutral cells). The epithelium of the accessory nasal sac has swollen stratified epithelial cells, mucous cells with a rich glycoprotein. Such an olfactory anatomy and histology of O. sinensis may reflect its habitat surrounding stagnant and polluted water.

Subchronic Inhalation Toxicity of Trichloroacetonitrile on the Sprague Dawley Rats

  • Han, Jeong-Hee;Chung, Yong-Hyun;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.203-211
    • /
    • 2015
  • Trichloroacetonitrile is used as an intermediate in insecticides, pesticides, and dyes. In Korea alone, over 10 tons are used annually. Its oral and dermal toxicity is classified as category 3 according to the globally harmonized system of classification and labelling of chemicals, and it is designated a toxic substance by the Ministry of Environment in Korea. There are no available inhalation toxicity data on trichloroacetonitrile. Thus, the present study performed inhalation tests to provide data for hazard and risk assessments. Sprague-Dawley rats were exposed to trichloroacetonitrile at concentrations of 4, 16, or 64 ppm for 6 hour per day 5 days per week for 13 weeks in a repeated study. As a result, salivation, shortness of breath, and wheezing were observed, and their body weights decreased significantly (p < 0.05) in the 16 and 64 ppm groups. All the rats in 64 ppm group were dead or moribund within 4 weeks of the exposure. Some significant changes were observed in blood hematology and serum biochemistry (e.g., prothrombin time, ratio of albumin and globulin, blood urea nitrogen, and triglycerides), but the values were within normal physiological ranges. The major target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs. The rats exposed to 16 ppm showed moderate histopathological changes in the transitional epithelium and olfactory epithelium of the nasal cavity. Nasal-associated lymphoid tissue (NALT) and respiratory epithelium were also changed. Respiratory lesions were common in the dead rats that had been exposed to the 64 ppm concentration. The dead animals also showed loss of cilia in the trachea, pneumonitis in the lung, and epithelial hyperplasia in the bronchi and bronchioles. In conclusion, the no-observed-adverse-effect level (NOAEL) was estimated to be 4 ppm. The main target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs.

A Study on the Structure of Peripheral Olfactory Organ in the Korean Mudskipper, Scartelaos gigas (Pisces, Gobiidae) (한국산 남방짱뚱어 Scartelaos gigas의 후각기관 구조에 관한 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Sung;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.26 no.4
    • /
    • pp.281-287
    • /
    • 2014
  • An olfactory organ in Scartelaos gigas, so-called mudskipper known as adaptation to an amphibious lifestyle, was investigated anatomically and histologically. S. gigas possessed the paired olfactory organ comprising respectively the one elongated canal and two nasal sacs, lacrimal and ethmoidal nasal sac. The sensory epithelium developed partly in the canal contained four distinct types of cells: (1) receptor cell with 3 to 4 cilia in number, (2) supporting, (3) basal, (4) mucus cell. The sensory epithelium was also of transitional layer as multi cellularity structure. The non-sensory epithelium had no sensory elements. The two nasal sacs possessed typically a lot of mucin droplets. These results might be considered that anatomical structure and histological characters of the olfactory organ showing in S. gigas is adapted to semi-aquatic life associated with its ecological habit and habitat.

A 3D "In Vitro" Model to Study Hyaluronan Effect in Nasal Epithelial Cell Line Exposed to Double-Stranded RNA Poly(I:C)

  • Albano, Giusy Daniela;Bonanno, Anna;Giacomazza, Daniela;Cavalieri, Luca;Sammarco, Martina;Ingrassia, Eleonora;Gagliardo, Rosalia;Riccobono, Loredana;Moscato, Monica;Anzalone, Giulia;Montalbano, Angela Marina;Profita, Mirella
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.272-281
    • /
    • 2020
  • Environmental agents, including viral and bacterial infectious agents, are involved in the alteration of physicochemical and biological parameters in the nasal epithelium. Hyaluronan (HA) has an important role in the regulation of tissue healing properties. High molecular weight HA (HMW-HA) shows greater anti-inflammatory responses than medium molecular weight HA (MMW-HA) and low molecular weight HA (LMW-HA). We investigated the effect of HMW-HA, MMW-HA and LMW-HA on the regulation of physicochemical and biological parameters in an "in vitro" model that might mimic viral infections of the nasal epithelium. Human nasal epithelial cell line RPMI2650 was stimulated with double-stranded RNA (dsRNA) Poly(I:C) for 5 days in air-liquid-interface (ALI) culture (3D model of airway tissue). dsRNA Poly(I:C) treatment significantly decreased transepithelial electrical resistance (TEER) in the stratified nasal epithelium of RPMI2650 and increased pH values, rheological parameters (elastic G' and viscous G''), and Muc5AC and Muc5B production in the apical wash of ALI culture of RPMI2650 in comparison to untreated cells. RPMI2650 treated with dsRNA Poly(I:C) in the presence of HMW-HA showed lower pH values, Muc5AC and Muc5B production, and rheological parameters, as well as increased TEER values in ALI culture, compared to cells treated with Poly(I:C) alone or pretreated with LMW-HA and MMW-HA. Our 3D "in vitro" model of epithelium suggests that HMW-HA might be a coadjuvant in the pharmacological treatment of viral infections, allowing for the control of some physicochemical and biological properties affecting the epithelial barrier of the nose during infection.

In Vivo Measurement of Ciliary Beat Frequency in Human Nasal Ciliated Epithelium Cells Using a Laser Light Scattering and AR Power Spectrum (레이저 산란 측정법과 AR 파워 스펙트럼 방법을 이용한 생체 내 섬모운동 주파수 측정 및 분석에 관한 연구)

  • Yi, Won-Jin;Park, Kwang-Suk;Yun, Ja-Bok;Min, Yang-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.199-200
    • /
    • 1998
  • The mucociliary system is one of the most important airway defense mechanisms, and knowledge of the ciliary beat frequency(CBF) is important in the understanding of this system. Using a laser light scattering method and fiber optic probe, we developed a simple and practical instrument for real-time in vivo measurements of CBF of cells in human nasal cavity. From the ciliated epithelium cells in an anterior end of middle terminator in nasal cavity, the signals of ciliary movement are transferred into a PC and analyzed by a autoregressive(AR) power spectrum. The mean CBF of 8 normal subjects was $7.1{\pm}1.1$(Hz). This instrument provided a convenient and reliable method of studying the mucociliary activity in the respiratory tract.

  • PDF