• Title/Summary/Keyword: naphthalene

Search Result 665, Processing Time 0.024 seconds

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Rhee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Lee Dong Hyun;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Separation and Recovery of Indole from Model Coal Tar Fraction by Batch Cocurrent 5 Stages Equilibrium Extraction (회분 병류 5단 평형추출에 의한 모델 콜타르 유분 중에 함유된 Indole의 분리 및 회수)

  • Kim, Su Jin;Chun, Yong Jin;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 2007
  • The separation of indole from a model mixture comprising four kinds of nitrogen heterocyclic compounds [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compounds [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN)], biphenyl (Bp) and phenyl ether (Pe) was examined by batch cocurrent 4 stages equilibrium extraction. The model mixture used as a raw material in this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: $240{\sim}265^{\circ}C$). An aqueous solution of formamide was used as a solvent. Indole was recovered more than 99% through 4 stages of the equilibrium extraction. The range of selectivity of indole in reference to DMN obtained through the 5 stages equilibrium extraction was found to be 63~118. The process for separation and recovery of indole contained in coal tar was studied by using the experimental results obtained from this work and the previous work.

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Proliferation, Accumulation of Polyphenols, and Antioxidant Activities of Callus from the 'Anji Baicha' Cultivar of Tea [Camellia sinensis (L.) O. Ktze.]

  • Liu, Mingfei;Wang, Junli;Tian, Birui;Huang, Jingjing;Zhang, Rongrong;Lin, Yuxing;Xiao, Zefeng
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.252-264
    • /
    • 2017
  • Tea is one of the most consumed beverages worldwide and the relatively high levels polyphenols is benefit for health. In this study, we developed an efficient system for proliferation of callus from 'Anji Baicha', a cultivar of tea (Camellia sinensis). Callus tissue was initially induced by culturing leaf explants on medium containing different plant growth regulators. For callus induction, thidiazuron (TDZ) was more effective than 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}-naphthalene$ acetic acid (NAA), and $N^6-benzyladenine$ (BA). The frequency of callus induction from leaf explants reached 90.21% on $1.0mg{\cdot}L^{-1}$ TDZ and the developed callus was reddish and friable. We also tested the effect of different concentrations of NAA, 2,4-D, indole 3-acetic acid (IAA), BA, and TDZ, alone and in combinations, on callus proliferation. Medium supplemented with TDZ in combination with IAA was suitable for callus proliferation and accumulation of tea polyphenols. The growth index value and tea polyphenol content of callus cultured on MS medium containing $0.5mg{\cdot}L^{-1}$ TDZ and $1.0mg{\cdot}L^{-1}$ IAA was maximally 1,351% and 23.24%, respectively, and the relative abundance of epicatechin was as high as 17.449%. We also measured the antioxidant activity of all samples and the callus with the highest tea polyphenol content also exhibited high potential radical scavenging activity.

Analysis and hazard classification for the monomers in thermoplastic resins (열가소성 수지의 단량체 분석 및 유해성 분류)

  • Lee, Kwon Seob;Jo, Ji-Hun;Choi, Jin hee;Choi, Sung bong;Lee, Jong Han;Yang, Jeong Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.322-334
    • /
    • 2007
  • This study covers the investigation of the actual condition in the workplace to produce plastics products using synthetic resins and the investigation on the trends amount of the domestic production of thermoplastic resins. To analyze the monomers included in thermoplastic resins frequently used in the workplace, we analyzed thermal characteristics for test compounds using thermogravimetric analysis and did the qualitative analysis using Pyrolyzer GC-MSD & TDS GC-MSD. And then we classified the health hazard of monomers based on GHS classification criteria using information toxicity & carcinogenicity. The number of the workplace to produce plastics products among all domestic manufacturers of 73,884 was 4,391 (5.94%). The number of workers to produce plastics products among all workers of 2,522,750 in all domestic manufacturers was 104,971 (4.16%). The amount of production per year for thermoplastic resins is in the order of PP, HDPE, LDPE, PVC, ABS, PS and such compounds was producing over 1 Million ton per year each. The classification result based on GHS classification criteria for 22 main compounds included thermoplastic resins says 2 compounds of acrylonitrile, naphthalene are in Acute oral category 3 and benzene is in Acute dermal category 1. The classification results of health hazard of carcinogenicity based on IARC & ACGIH carcinogen classification says 2 compounds of benzene, vinyl chloride are in category 1A (known to be human carcinogens).

Organic Compounds in the Nak Dong River and Its Toxicity (낙동강 수질중 유기물질과 독성)

  • 류병호;심종환;최진택;조현철;정종순
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • This study aims to investigate organic compounds and its toxicity by Ames test and chromosomal aberration in the water of the Nak Dong River. Six sampling sites such as Goryung, Hagueun, Maelie, Duksan, Haedong and Myungiang were selected for these pur15oses. 200 l water samples were absorbed on XAD-2 resin columns (2.5X30cm), eluted with organic solvents mixture of acetone: cyclohexane and then dried under vacuum condition. The extracts from the XAD-2 resin was injected into GC/MS and 184 organic compounds were identified such as aldehydes, aromatic compounds, ketones, phenols, hydrocarbons, alcohols, carboxylic acids, alkanes and some unknowns. The US EPA priority pollutants such as naphthlene, bis(2-ethylhexyl)phthalate and other pollutants, 1,2-diethyl benzene, 1,2,3,4-tetrahydronaphthalene and cyclohexanol were detected in these samples. The concentration of chemical pollutants such as 1,2-diethyl benzene, nephthalene, 1,2,3,4-tetrahydronaphthalene, bis(2-ethylhexyl)phthalate and cyclohexanol were ranged into 1.228 $\mu$g/l, 298 $\mu$g/l, 30.191 $\mu$g/l, 1.147 $\mu$g/l and 2.839 $\mu$g/l, respectively. The mutagenic activity of XAD-2 extracts were tested on Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 and then exhibited strong mutagenic activity against S. typhimurium TA 98 and TA 100 in the presence of S$_9$. Amon them, bis(2-ethylhexyl)phtalate and 1,2-diethyl benzene showed the most strongest mutagenic activity against S. typhimurium TA 98 and TA 100 in the presence of S$_9$. On the other hands, chromosomal aberration of XAD-2 extracts in the human blood cells were not occurred by the sampling water at Goryung, Hagueun, Maelie and Duksan, Chromosomal aberration were also not occurred by the each concentration of 0.05, 0.1 amd 0.3 mg/l of each 1,2-diethyl benzol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, cyclohexanol and benzothiazol test solution.

  • PDF

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

Effect of Inclined Jet on Heat/Mass Transfer for Impingement/Effusion Cooling System (경사제트에 따른 충돌제트/유출냉각에서 열/물질전달 특성)

  • Hong, Sung-Kook;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.283-289
    • /
    • 2008
  • An experimental investigation was conducted to investigate the heat/mass transfer for impingement/effusion cooling system with inclined jet. Jets with inclined angle of 60 are applied to impingement/effusion cooling. At the jet Reynolds number of 10,000, the experiments were carried out for blowing ratios ranging from 0.0 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result indicates that the inclined jet causes the non-uniform and low heat/mass transfer compared to the vertical jet. At stagnation region, the peak position is shifted from the geometrical center of injection hole due to Coanda effect and its level is higher than that of vertical jet due to increase in turbulence intensity by steep velocity gradient near the stagnation region. Further, the secondary peak region disappears because the interaction between adjacent wall jets weakens. When the initial crossflow occurs, the distorted heat/mass transfer pattern appears. As the blowing ratio (crossflow rate) increases, the heat/mass transfer distributions become similar to those of the vertical jet. This is because the effect of crossflow is dominant compared to that of inclined jet under high blowing ratio $(M{\geq}1.0)$. At low blowing ratio $(M{\leq}0.5)$, averaged Sh value is 10% lower than that of vertical jet, whereas its value at high blowing ratio $(M{\geq}1.0)$ is similar to that of vertical jet.