• Title/Summary/Keyword: nanotubes and nanowires

Search Result 51, Processing Time 0.025 seconds

Molecular dynamics study of silicon nanotubes (실리콘 나노튜브에 관한 분자동력학 연구)

  • 강정원;변기량;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.281-287
    • /
    • 2003
  • We have performed classical molecular dynamics simulations for hypothetical silicon nanotubes using the Tersoff potential. Our investigation presented a systematic study about the thermal behavior of hypothetical silicon nanotubes and showed the difficulty in Producing silicon nanotubes or graphitelike sheets. Through the investigations on the structure and properties of a double-wall silicon nanotube, we concluded that quasi-one dimensional structures consisting of silicon atoms become nanowires or multi wall nanotubes rather than single wall nanotubes in order to minimize the number of $sp^2$ bonds.

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Routes to Improving Performance of Solution-Processed Organic Thin Film Transistors

  • Li, Flora M.;Hsieh, Gen-Wen;Nathan, Arokia;Beecher, Paul;Wu, Yiliang;Ong, Beng S.;Milne, William I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1051-1054
    • /
    • 2009
  • This paper investigates approaches for improving effective mobility of organic thin film transistors (OTFTs). We consider gate dielectric optimization, whereby we demonstrated >2x increase in mobility by using a silicon-rich silicon nitride ($SiN_x$) gate dielectric for polythiophene-based (PQT) OTFTs. We also engineer the dielectric-semiconductor ($SiN_x$-PQT) interface to attain a 27x increase in mobility (up to 0.22 $cm^2$/V-s) using an optimized combination of oxygen plasma and OTS SAM treatments. Augmentative material systems by combining 1-D nanomaterials (e.g., carbon nanotubes, zinc oxide nanowires) in an organic matrix for nanocomposite OTFTs provided a further boost in device performance.

  • PDF

Structural Phases of Potassium Intercalated into Carbon Nanotubes (탄소 나노튜브 내부에 삽입된 칼륨 구조)

  • 변기량;강정원;송기오;최원영;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.249-258
    • /
    • 2004
  • We investigated structural phases of potassium intercalated into carbon nanotubes using a structural optimization process applied to atomistic simulation methods. As the radius of carbon nanotubes increased, structures were found in various phases from an atomistic strand to multishell packs composed of coaxial cylindrical shells and in helical, layed, and crystalline structures. Numbers of helical atom rows composed of coaxial tubes and orthogonal vectors of a circular rolling of a triangular network could explain multishell phases of potassium in carbon nanotubes.

Synthesis of Vertically Aligned SiNW/Carbon Core-shell Nanostructures

  • Kim, Jun-Hui;Kim, Min-Su;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.2-488.2
    • /
    • 2014
  • Carbon-based materials such as carbon nanotubes and graphene have emerged as promising building blocks in applications for nanoelectronics and energy devices due to electrical property, ease of processability, and relatively inert electrochemistry. In recent years, there has been considerable interest in core-shell nanomaterials, in which inorganic nanowires are surrounded by inorganic or organic layers. Especially, carbon encapsulated semiconductor nanowires have been actively investigated by researchers in lithium ion batteries. We report a method to synthesize silicon nanowire (SiNW) core/carbon shell structures by chemical vapor deposition (CVD), using methane (CH4) as a precursor at growth temperature of $1000{\sim}1100^{\circ}C$. Unlike carbon-based materials synthesized via conventional routes, this method is of advantage of metal-catalyst free growth. We characterized these materials with FE-SEM, FE-TEM, and Raman spectroscopy. This would allow us to use these materials for applications ranging from optoelectronics to energy devices such as solar cells and lithium ion batteries.

  • PDF

SnO2 Semiconducting Nanowires Network and Its NO2 Gas Sensor Application (SnO2 반도체 나노선 네트웍 구조를 이용한 NO2 가스센서 소자 구현)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Choi, Si-Hyuk;Park, Jae-Gwan;Park, Jae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.223-227
    • /
    • 2010
  • Recently, one-dimensional semiconducting nanomaterials have attracted considerable interest for their potential as building blocks for fabricating various nanodevices. Among these semiconducting nanomaterials,, $SnO_2$ nanostructures including nanowires, nanorods, nanobelts, and nanotubes were successfully synthesized and their electrochemical properties were evaluated. Although $SnO_2$ nanowires and nanobelts exhibit fascinating gas sensing characteristics, there are still significant difficulties in using them for device applications. The crucial problem is the alignment of the nanowires. Each nanowire should be attached on each die using arduous e-beam or photolithography, which is quite an undesirable process in terms of mass production in the current semiconductor industry. In this study, a simple process for making sensitive $SnO_2$ nanowire-based gas sensors by using a standard semiconducting fabrication process was studied. The nanowires were aligned in-situ during nanowire synthesis by thermal CVD process and a nanowire network structure between the electrodes was obtained. The $SnO_2$ nanowire network was floated upon the Si substrate by separating an Au catalyst between the electrodes. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structure. By varying the nanowire density and the distance between the electrodes, several types of nanowire network were fabricated. The $NO_2$ gas sensitivity was 30~200 when the $NO_2$ concentration was 5~20ppm. The response time was ca. 30~110 sec.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF