• Title/Summary/Keyword: nanorod

Search Result 285, Processing Time 0.03 seconds

Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method (수열법으로 성장한 ZnO Nanorod/ZnO/Si(100)의 특성)

  • Jeong, Min-Ho;Jin, Yong-Sik;Choi, Sung-Min;Han, Duk-Dong;Choi, Dae-Kue
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied and applied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that they provide. ZnO seed layer (about 40 nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of 60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at $95^{\circ}C$ for 5 hr by hydrothermal method with concentrations of $Zn(NO_3)_2{\cdot}6H_2O$ [ZNH] and $(CH_2)_6N_4$ [HMT] precursors ranging from 0.02M to 0.1M. We observed the microstructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape to the c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08 M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality. Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highest peak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak of NBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality and homogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and the formation of Zn vacancies in the nanorods due to the lack of $Zn^{++}$ in the 0.02 M precursor.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Catalyst-free 유기 금속 화학 증착법을 이용한 InN 나노구조의 성장

  • Kim, Min-Hwa;Lee, Cheol-Ho;Jeong, Geon-Uk;Mun, Dae-Yeong;Jeon, Jong-Myeong;Kim, Mi-Yeong;Park, Jin-Seop;Lee, Gyu-Cheol;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.264-265
    • /
    • 2010
  • 최근, nanorod나 nanowire와 같은 1차원의 나노구조가 나노디바이스로 각광을 받고 있다. [1] 특히 InN는 3족 질화물 반도체 중 가장 작은 밴드갭 에너지와 뛰어난 수송 특성을 가지고 있어 나노디바이스로의 응용에 적합한 물질이다. [2] 그러나 InN는 큰 평형증기압을 가지므로 쉽게 인듐과 질소로 분해되는 특성이 있어 나노구조로의 성장이 쉽지 않음이 알려져 있다. [3] 최근 연구결과에 따르면, InN 나노구조는 금속 catalyst를 사용한 방법이나, 기판 위 패턴을 이용하여 성장하는 방법, 염소를 사용한 방법이 널리 쓰이고 있다. [4,5,6] 그러나 이 방법들은 의도치 않은 불순물의 원인이 되거나 다른 추가적인 과정을 필요로 한다는 문제점도 일부 가지고 있다. 본 연구에서는 catalyst-free 유기 금속 화학 증착법 (MOCVD)를 이용하여 $Al_2O_3$ (0001)면 위에 InN nanostructure를 성장하였다. InN nanostructure 성장 시 트리메틸인듐(TMIn)과 암모니아($NH_3$) 를 전구체로 사용하였으며, 캐리어 가스로는 질소를 사용하였다. 또한 모든 샘플의 성장시간은 60분으로 고정하였으나, 성장 시 온도의 의존성을 보기 위해 $680-710^{\circ}C$ 의 온도범위에서 성장을 진행하였다. 그 결과 InN는 본 실험에서 적용된 성장온도범위 내에서 온도가 증가함에 따라 초기에는 columnar구조로 성장된 박막의 형태에서 wall이 배열된 형태로 변화하며 결국 $710^{\circ}C$ 의 온도에서 nanorod로 성장하게 된다. 성장된 InN의 나노구조는 X-선 회절 측정법, 주사 전자 현미경 그리고 투과 전자 현미경을 이용하여 각각의 구조적 특성을 분석하였다. X-선 회절 측정법과 주사 전자 현미경을 통한 분석결과에서는 이들 nanorods가 대부분 c 방향으로 수직하게 정렬되어 있음을 확인 할 수 있었다. 또한, $690^{\circ}C$ 에서 60분간 성장된 InN의 wall 구조의 두께는 200 nm, 길이는 $2-2.5\;{\mu}m$로 관찰되었으며, $710^{\circ}C$에서 60분간 성장된 InN nanorod의 지름은 150 nm, 길이는 $3\;{\mu}m$ 정도로 관찰되었다. 이를 통하여 볼 때 성장 온도가 InN의 나노구조 형성 시 표면의 모폴로지변화에 중요한 변수로 작용함을 알 수 있다. 본 발표에서는 이러한 표면 형상 및 구조 변화가 성장온도에 따른 관계성을 가짐을 InN의 분해와 성장의 경쟁적인 관계에 의해 논의할 것이다.

  • PDF

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

Electromagnetic Transmission Characteristics of a Nanorod Cylinder Array (나노 원기둥 배열의 전자파 전달 특성)

  • Cho, Yong Heui
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.29-30
    • /
    • 2013
  • 차세대 전자 소자용 전송 선로로 사용될 수 있는 나노 원기둥 배열의 분산 관계 특성을 모드 정합법을 사용하여 계산하였다. 서로 떨어진 나노 원기둥 배열에도 배열이 놓인 방향으로 전자파 모드가 형성되는 것을 수치 해석 결과로 제시한다. 또한 나노 원기둥 배열에 생기는 전기장의 분포 특성도 제시한다.

  • PDF