• Title/Summary/Keyword: nanoparticles toxicity

Search Result 129, Processing Time 0.023 seconds

Microfluidic Image Cytometry (μFIC) Assessments of Silver Nanoparticle Cytotoxicity

  • Park, Jonghoon;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4023-4027
    • /
    • 2012
  • Cytotoxicity assessment of silver nanoparticles (AgNPs) was performed using MTT-based microfluidic image cytometry (${\mu}FIC$). The $LC_{50}$ value of HeLa cells exposed to AgNPs in the microfluidic device was estimated as 46.7 mg/L, which is similar to that estimated by MTT-based IC for cells cultured in a 96 well plate (49.9 mg/L). These results confirm that the ${\mu}FIC$ approach can produce cytotoxicity data that is reasonably well-matched with that of the conventional 96 well plate system with much higher efficiency. This ${\mu}FIC$ method provides many benefits including ease of use and low cost, and is a more rapid in vitro cell based assay for AgNPs. This may aid in speeding up data acquisition in the field of nanosafety and make a significant contribution to the quantitative understanding of nanoproperty-toxicity relationships.

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles

  • Dua, Pooja;Chaudhari, Kiran N.;Lee, Chang-Han;Chaudhari, Nitin K.;Hong, Sun-Woo;Yu, Jong-Sung;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2051-2057
    • /
    • 2011
  • Several studies have demonstrated that nanoparticles (NPs) have toxic effects on cultured cell lines, yet there are no clear data describing the overall molecular changes induced by NPs currently in use for human applications. In this study, the in vitro cytotoxicity of three oxide NPs of around 100 nm size, namely, mesoporous silica (MCM-41), iron oxide ($Fe_2O_3$-NPs), and zinc oxide (ZnO-NPs), was evaluated in the human embryonic kidney cell line HEK293. Cell viability assays demonstrated that 100 ${\mu}g/mL$ MCM-41, 100 ${\mu}g/mL$ $Fe_2O_3$, and 12.5 ${\mu}g/mL$ ZnO exhibited 20% reductions in HEK293 cell viability in 24 hrs. DNA microarray analysis was performed on cells treated with these oxide NPs and further validated by real time PCR to understand cytotoxic changes occurring at the molecular level. Microarray analysis of NP-treated cells identified a number of up- and down-regulated genes that were found to be associated with inflammation, stress, and the cell death and defense response. At both the cellular and molecular levels, the toxicity was observed in the following order: ZnO-NPs > $Fe_2O_3$-NPs > MCM-41. In conclusion, our study provides important information regarding the toxicity of these three commonly used oxide NPs, which should be useful in future biomedical applications of these nanoparticles.

A Research on Superparamagnetic Iron Oxide Nanoparticles' Toxicity to U373MG Cell and its Effect on the Radiation Survival Curve (산화철 나노입자의 U373MG 세포 독성평가 및 방사선 세포생존 곡선에 미치는 영향에 대한 연구)

  • Kang, Seonghee;Kim, Jeonghwan;Kim, Dokyung;Kang, Bosun
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.507-513
    • /
    • 2012
  • This research was performed to evaluate the superparamagnetic iron oxide nanoparticles'(SPIONs) cell toxicity and to measure the radiation cell survival curve changes of SPIONs-uptake glioblastoma multiforme cells. The results could be practically used as the fundamental data to ameliorate proton beam cancer therapy, for example, providing necessary GBM treatment dose in the proton beam therapy when the therapy takes advantage of SPIONs. The assessment of the toxicological evaluation of synthesized SPIONs was accomplished by MTT assay as an in vitro experiment. The results showed no meaningful differences in the cell survival rate at the $1-100{\mu}g/ml$ SPIONs concentrations, but the cell toxicity was shown as the cell survival rate decreased up to 74.2% at the $200{\mu}g/ml$ SPIONs concentration. Then, we measured each radiation cell survival curve for U373MG cells and SPIONs-uptake U373MG cells with 0~5 Gy of proton beam irradiations. It is learned from the analysis of the experimental results that the SPION-uptake cells' radiation survival rate was more rapidly decreased as the irradiation dose increased. In conclusion we confirmed that SPIONs-uptake in U373MG cells induces cell death at the much less dose than the lethal dose of SPION-non-uptake cell. This research shows that the therapeutic efficacy of glioblastoma multiforme treatment in proton beam therapy can be improved by SPIONs targeting to the GBM cells.

Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis

  • Yeo, Min-Kyeong;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1179-1184
    • /
    • 2008
  • Commercial nanometer sized silver is widely used for its antibacterial effect; however, nanoparticles may also have ecotoxicological effects after being discharged into water. Nanometer sized silver can flow into aquatic environments, where it can exert a variety of physiologically effects in living organisms, including fish. The present study aimed to investigate the effect of nanometer sized silver on the development of zebrafish embryos, analyze the properties of commercial nanometer sized silver and define the toxicity relationship between embryogenesis and hatched flies. The commercial nanometer sized silver was analyzed in the $Ag^+$ ion form. The hatch rate decreased in the nano-silver exposed groups (10 and 20 ppt); furthermore, the hatched flies had an abnormal notochord, weak heart beat, damaged eyes and curved tail. The expression of the Sel N1 gene decreased in the nano-silver exposed groups, and the catalase activities of the exposed groups increased relative to those in the control group. Therefore, the $Ag^+$ ions in commercial nanometer sized silver could accumulate in aquatic environments and seriously damage the development of zebrafish embryos.

Efficacy of Synthesized NO-releasing Nanoparticles on the Germination and Growth of Arabidopsis thaliana

  • Nusrat Jahan Methela;Anjali Pande;Waqas Rahim;Da-Sol Lee;Bong-Gyu Mun;Geun-Mo Lee;Cho Jun-ho;Tiba Nazar Ibrahim Al Azzawi;Hak-Yoon Kim;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.159-159
    • /
    • 2022
  • Nitric oxide (NO) is a versatile signaling molecule, which is not only involved in plant growth and development but also regulates biological processes in response to biotic and abiotic stresses. Exogenous application of NO regulates the endogenous level of nitric oxide in response to stress conditions and therefore, NO donors are frequently used for stress alleviation. However, NO has very short half-life along with high reactivity. Therefore, conventional NO donors are often disadvantageous due to the relative instability of NO. On the contrary, development of NO releasing nanoparticles is a potential technique for enhancing the availability of NO in plants. Therefore, our aim was to synthesize such potential NO releasing nanoparticles which may be useful for application in agriculture. We have prepared Chitosan encapsulated S-nitrosoglutathione nanoparticles (GSNONP) and tried it with different concentrations for basic research in Arabidopsis thaliana. Our results suggest that lower concentration of this nanoparticle is highly effective for better growth of plants whereas higher concentration produces toxicity that leads to plant death. We observed better growth of Arabidopsis thaliana at 1µM concentration of the GSNONP compared to free GSNO.

  • PDF

Photocatalytic Degradation and Detoxification of Bisphenol A Using TiO2 Nanoparticles (TiO2 나노입자 광촉매 반응에 의한 비스페놀 A의 분해 제거 및 독성 저감)

  • Jo, A-Yeong;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • Photocatalytic degradation of bisphenol A (BPA) in aqueous solution was investigated using $TiO_2$ nanoparticles (Degussa P25) in this study. After a 3 hr photocatalytic reaction (${\lambda}=365nm$ and $I=3mW\;cm^{-2}$, $[TiO_2]=2.0g\;L^{-1}$), 98% of BPA ($1.0{\times}10^{-5}M$) was degraded and 89% of the total organic carbon was removed. In addition, BPA degradation by photolytic, hydrolytic and adsorption reactions was found to be 2%, 5% and 13%, respectively. The reaction rate of BPA degradation by photocatalysis decreased with increasing concentration of methanol that is used as a hydroxyl radical scavenger. This indicates that the reaction between BPA and hydroxyl radical was the key mechanism of BPA degradation. The pseudo-first-order reaction rate constant for this reaction was determined to be $7.94{\times}10^{-4}min^{-1}$, and the time for 90% BPA removal was found to be 25 min. In addition, acute toxicity testing using Daphnia magna neonates (< 24 h old) was carried out to evaluate the reduction of BPA toxicity. Acute toxicity (48 hr) to D. magna was decreased from 2.93 TU (toxic unit) to non-toxic after photocatalytic degradation of BPA for 3 hr. This suggests that there was no formation of toxic degradation products from BPA photocatalysis.

Toxicity Evaluation of Metals and Metal-oxide Nanoparticles based on the Absorbance, Chlorophyll Content, and Cell Count of Chlorella vulgaris (Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사)

  • Jang, Hyun Jin;Lee, Mun Hee;Lee, Eun Jin;Yang, Xin;Kong, In Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, toxicities of seven metals (Cu, Cd, Cr, As(III), As(V), Zn, Ni) and five metal oxide nanoparticles (NPs: CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$) were evaluated based on the growth of Chlorella vulgaris. Effect on algae growth was evaluated by integrating the results of absorption, chlorophyll content, and cell count. The toxicity rankings of metals was observed as Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$). Slightly different orders and sensitivities of metal toxicity were examined depending on endpoints of algal growth. In case of NPs, regardless of endpoints, similar toxicity rankings of NPs ($TEC_{50}$) were observed, showing ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$). These results indicate that an integrating results of endpoints might be an effective strategy for the assessment of contaminants.

Effects of Size of Metal Particles on Soil Microbial Community and Buck Wheat (금속 입자 크기가 토양 미생물 군집과 메밀에 미치는 영향)

  • Kim, Sung-Hyun;Kim, Jung-Eun;Gwak, Young-Ji;Kim, Yun-Ji;Lee, In-Sook
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2011
  • This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.