• 제목/요약/키워드: nanomaterial

검색결과 175건 처리시간 0.026초

나노물질 안전관리 동향 및 제도 도입에 관한 고찰 (Safety Management System on Nanomaterials with a Regulatory Scheme)

  • 김선아;김호정;홍용석
    • 환경정책연구
    • /
    • 제12권3호
    • /
    • pp.49-71
    • /
    • 2013
  • 독성, 환경 노출 및 인체에 대한 위해성 유해성 등 안전성에 대한 문제점을 가지고 있는 나노물질의 확인 및 안전성 확보의 요구가 점차 높아지고 있다. 나노물질은 화학물질로 이용될 뿐만 아니라 소비자가 이용하는 제품으로 범 분야에 걸쳐 활용되기 때문에, 보다 효과적인 나노물질의 안전관리 제도화를 위해서는 각국의 정책사례를 규제 강도별, 나노 적용분야별, 규제대상 종류별로 구분하여 정책 동향을 파악하는 것이 중요하다. 나노물질의 잠재적 위험성을 최소화시키기 위해서는 사전예방원칙을 적용한 제도의 구축 또한 필요하다. 더불어 국내 실정에 적합한 정책 수립을 목표로 하고, 국제 흐름에 선제적, 능동적으로 대응할 수 있는 방안도 함께 고려해야 한다.

  • PDF

관성/확산필터를 이용한 나노입자의 분류기술 연구 (Classification of Nanoparticles by Inertial/Diffusion Filter)

  • 김용구;이상열;김한나;노학재;봉춘근;김대성
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.838-842
    • /
    • 2015
  • The Li-air battery is a promising candidate for the most energy-dense electrochemical power source because it has 5 to 10 times greater energy storage capacity than that of Li-ion batteries. However, the Li-air cell performance falls short of the theoretical estimate, primarily because the discharge terminates well before the pore volume of the air electrode is completely filled with lithium oxides. Therefore, the structure of carbon used in the air electrode is a critical factor that affects the performance of Li-air batteries. In a previous study, we reported a new class of carbon nanomaterial, named carbon nanoballs (CNBs), consisting of highly mesoporous spheres. Structural characterization revealed that the synthesized CNBs have excellent a meso-macro hierarchical pore structure, with an average diameter greater than 10 nm and a total pore volume more than $1.00cm^3g^{-1}$. In this study, CNBs are applied in an actual Li-air battery to evaluate the electrochemical performance. The formation mechanism and electrochemical performance of the CNBs are discussed in detail.

A Mini-Review on Non-Aqueous Lithium-Oxygen Batteries - Electrochemistry and Cathode Materials

  • Riaz, Ahmer;Jung, Kyu-Nam;Lee, Jong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권2호
    • /
    • pp.50-58
    • /
    • 2015
  • There is a great deal of current interest in the development of rechargeable batteries with high energy storage capability due to an increasing demand for electric vehicles (EVs) with driving ranges comparable to those of gasoline-powered vehicles. Among various types of batteries under development, a Li-O2 battery delivers the highest theoretical energy density; thus, it is considered a promising energy storage technology for EV applications. Despite the fact that extensive research efforts have been made in the field of Li-O2 batteries in recent years, there are still many technical challenges to be addressed, such as low round-trip efficiency, poor reversibility, and poor power capability. In this article, we provide a short review on the fundamental electrochemistry of Li-O2 batteries with non-aqueous electrolytes and on electrode materials that have been employed in cathodes (oxygen electrodes). The major aim of this mini-review is to highlight the physical and electrochemical origins of scientific challenges facing Li-O2 battery technology and to overview the strategies proposed to overcome them.

Reinforcing Efficiencies of Two Different Cellulose Nanocrystals in Polyvinyl Alcohol-Based Nanocomposites

  • Park, Byung-Dae;Causin, Valerio
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권4호
    • /
    • pp.250-255
    • /
    • 2013
  • As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about $6.96{\pm}0.87nm$ wide and $178{\pm}55nm$ long, while CNFs were $7.07{\pm}0.99nm$ wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.

기계적으로 합성한 분말로부터 펄스전류 활성 소결에 의한 나노구조 $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ 복합재료제조 (Fabrication of Nanostructured $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ Composite by Pulsed Current Activated Sintering from Mechanically Synthesized Powder)

  • 박나라;송준영;남기석;손인진
    • 열처리공학회지
    • /
    • 제22권3호
    • /
    • pp.149-154
    • /
    • 2009
  • Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ composite was consolidated from mechanically synthesized powders by pulsed current activated sintering method within 1 min. $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ powder was synthesized from 3CuO and 2FeAI using the high energy ball milling. Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Mechanical properties and grain size of the composite were investigated.

간이상수도 자동소독 정수기의 개발 및 성능에 관한 연구 (Development and Performance of Water Purifier with the Auto-Disinfected on a simple Drinking Water)

  • 조병락;이배복;최명부
    • 한국산업융합학회 논문집
    • /
    • 제16권2호
    • /
    • pp.41-46
    • /
    • 2013
  • On the purpose of helping the inhabitants living in farming, fishing villages, and islands for more safe and hygienic water from simple waterworks, experimental investigations were performed concerning the development of a water purifier with silver nanomaterial packed, having a function of the auto-disinfection. The results show as follows through such filteration and auto-disinfection processes. It is possible to get hygienic and safe water, for example, more than 95% of general bacteria, total coliforms, and fecal coliforms were removed. It is also possible to get good-quality water, for 49.4% of spent potassium permanganate and 85% and 63% of turbidity and conductivity were removed respectively. It is a very effective equipment, for 100% cost reduction of used chemicals was achieved by no-chemical disinfection process and THM was not generated.

나노입자의 수생태계 영양단계전이 연구동향 (Research Trend of Trophic Transfer of Nanoparticles in Aquatic Ecosystems)

  • 이우미;안윤주
    • 생태와환경
    • /
    • 제44권4호
    • /
    • pp.317-326
    • /
    • 2011
  • With its recent advances, nanotechnology is now being applied to various areas. Despite the benefits of nanoparticles, their risk in the environment has caused controversy, which is now becoming an international issue. Nanoparticles can easily infiltrate into cells, accumulate in biota, and may cause adverse effects in the levels of molecules, cells and organisms, and in the community. If nanoparticles are released into the environment, they can be transferred to organisms in the ecosystem, and eventually to the human body through the food chain. In this study, the research trend of the trophic transfer of nanoparticles in the food chain was investigated. Although a few investigations have been conducted regarding this topic, the trophic transfer of nanoparticles is becoming a significant issue in the area of nanotoxicology due to the potential risk to humans via the biomagnification process. While previous studies have demonstrated evidence of the trophic transfer of nanoparticles intensive future studies are needed to provide further information on the properties of nanomaterials, the exposure media, and the in vivo mechanisms such as uptake, accumulation, and depuration.

기계공학 관점에서 살펴본 나노소재 산업의 발전 및 비전 (Development and Prospect of Nanomaterials Industries from the Perspective of Mechanical Engineering)

  • 김대성;최만수
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권1호
    • /
    • pp.69-77
    • /
    • 2017
  • 나노기술은 IT, BT 기술과 함께 21세기에 기술혁명을 주도해 나갈 핵심 기술이기에 현재 우리나라를 비롯한 전 세계의 선진국들이 이 분야에 많은 연구 역량을 집중시키고 있고, 그 중에서도 나노소재 산업은 이 경쟁의 중심에 있다고 볼 수 있다. 본 연구에서는 기계공학 측면에서 나노소재 산업에 대하여 살펴보았다. 나노소재는 나노크기의 재료라는 점에서 기존의 마이크론 혹은 서브마이크론 재료에 서 발견할 수 없는 특별한 효과를 나타내거나 전혀 새로운 응용분야를 만들어낼 가능성이 크다. 특히 환경, 바이오, 에너지, 촉매 등 다양한 분야에서 그 응용이 기대된다.

Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics

  • Park, Tae-Jin;Choi, Young-Chul;Ham, Jiwoong
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.363-372
    • /
    • 2020
  • Anionic radionuclides pose one of the highest risks to the long-term safety assessments of disposal repositories. Therefore, techniques to immobilize and separate such anionic radionuclides are of crucial importance from the viewpoints of safety and waste volume reduction. The main objective of this study is to design a separator with minimum pressure disturbance, based on the concept of a conventional cyclone separator. We hypothesize that the anionic radionuclides can be immobilized onto a nanomaterial-based substrate and that the particles generated in the process can flow via water. These particles are denser than water; hence, they can be trapped within the cyclone-type separator because of its design. We conducted particle tracking analysis using computational fluid dynamics (CFD) for the conventional cyclone separator and studied the effects due to the morphology of the separator. The proposed sandglass-like design of the separator shows promising results (i.e., only one out of 10,000 particles escaped to the outlet from the separation zone). To validate the design, we manufactured a laboratory-scale prototype separator and tested it for iron particles; the efficiency was ca. 99%. Furthermore, using an additional magnetic effect with the separator, we could effectively separate particles with ~100% efficiency. The proposed sandglass-like separator can thus be used for effective separation and recovery of immobilized anionic radionuclides.