• Title/Summary/Keyword: nanoinks

Search Result 2, Processing Time 0.015 seconds

Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks (Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능)

  • Bae, Ju-Won;Koo, Bon-Ryul;Lee, Tae-Kun;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.