• 제목/요약/키워드: nanoimprint

검색결과 199건 처리시간 0.027초

미세 패턴 성형용 판형 금형의 급속 가열을 위한 유도가열기구 (Induction Heating Apparatus for Rapid Heating of Flat-Type Metallic Mold in Hot Embossing)

  • 홍석관;이성희;허영무;강정진
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.282-287
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C\;to\;150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.

대면적 UV 임프린팅 공정에서 유연 몰드의 변형 (Soft Mold Deformation of Large-area UV Impring Process)

  • 김남웅;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

대면적 UV 임프린팅 공정에서 고무 롤러에 의한 압력분포 (Pressure Distribution by Rubber Roller in Large-area UV Imprinting Lithography Process)

  • 김남웅;김국원;이우영
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.91-96
    • /
    • 2010
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we consider the roll-to-plate type imprinting process. In the process a glass mold, which is placed upon the 2nd generation TFT-LCD glass sized substrate(370${\yen}$470 mm), is rolled by a rubber roller to achieve a uniform residual layer. The pressure distribution on the glass mold by rolling of the rubber roller is crucial information to analyze mold deformation, transferred pattern quality, uniformity of residual layer and so forth. In this paper the quantitative pressure distribution induced by rolling of the rubber roller was calculated with finite element analysis under the assumption of Neo-Hookean hyperelastic constitutive relation. Additionally the numerical results were verified by the experiments.

Deformation Analysis of Roll Mold for Nano-flexible Devices

  • Khaliq, Amin;Tahir, Usama;Jeong, Myung Yung
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.47-50
    • /
    • 2021
  • Nanoimprint lithography (NIL) has revolutionized the fabrications of electronics, photonics, optical and biological devices. Among all the NIL processes, roll-to-roll nanoimprinting is regarded best for having the attributes of low cost, continuous, simple, and energy-efficient process for nanoscale device fabrication. However, large-area printing is limited by the master mold deformation. In this study, a finite element model (FEM) has been constructed to assess the deformation of the roll mold adhesively wrapped on the carbon fiber reinforced material (CFRP) base roll. This study also optimizes the deformations in the metallic roll mold with respect to nip-forces applied in the printing process of nano-fabrication on large scale. The numerical simulations were also conducted to evaluate the deflection in roll mold assembly due to gravity. The results have shown decreasing trend of the deformation with decreasing nip-force. Also, pressure uniformity of about 40% has been optimized by using the current numerical model along with an acceptable deflection value in the vertical axis due to gravity.

기상 자기조립박막 법을 이용한 나노임프린트용 점착방지막 형성 및 특성평가 (Deposition and Characterization of Antistiction Layer for Nanoimprint Lithography by VSAM (Vapor Self Assembly Monolayer))

  • 차남구;김규채;박진구;정준호;이응숙;윤능구
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.31-36
    • /
    • 2007
  • Nanoimprint lithography (NIL) is a new lithographic method that offers a sub-10nm feature size, high throughput, and low cost. One of the most serious problems of NIL is the stiction between mold and resist. The antistiction layer coating is very effective to prevent this stiction and ensure the successful NIL results. In this paper, an antistiction layer was deposited by VSAM (vapor self assembly monolayer) method on silicon samples with FOTS (perfluoroctyltrichlorosilane) as a precursor for making an antistiction layer. A specially designed LPCVD (low pressure chemical vapor deposition) was used for this experiment. All experiments were achieved after removing the humidity. First, the evaporation test of FOTS was performed for checking the evaporation temperature at low pressure. FOTS was evaporated at 5 Tow and $110^{\circ}C$. In order to evaluate the temperature effect on antistiction layer, chamber temperature was changed from 50 to $170^{\circ}C$ with 0.1ml of FOTS for 1 minute. Good hydrophobicity of all samples was shown at about $110^{\circ}$ of contact angle and under $20^{\circ}$ of hysteresis. The surface energies of all samples calculated by Lewis acid/base theory was shown to be about 15mN/m. The deposited thicknesses of all samples measured by ellipsometry were almost 1nm that was similar value of the calculated molecular length. The surface roughness of all samples was not changed after deposition but the friction force showed relatively high values and deviations deposited at under $110^{\circ}$. Also the white circles were founded in LFM images under $110^{\circ}$. High friction forces were guessed based on this irregular deposition. The optimized VSAM process for FOTS was achieved at $170^{\circ}C$, 5 Torr for 1 hour. The hot embossing process with 4 inch Si mold was successfully achieved after VSAM deposition.

나노 임프린트 기술을 이용한 폴리머 링 광공진기 (Polymer Optical Microring Resonator Using Nanoimprint Technique)

  • 김도환;임정규;이상신;안세원;이기동
    • 한국광학회지
    • /
    • 제16권4호
    • /
    • pp.384-391
    • /
    • 2005
  • 본 논문에서는 나노 임프린트 기술을 이용한 폴리머 링 광공진기를 제안하고 구현하였다. 공진기 역할을 하는 링 도파로에서의 전파손실과 링 및 버스 도파로 간의 광파워 결합계수를 빔전파방법을 도입하여 계산하였으며, 또한 전달 매트릭스 방법을 도입하여 이들이 소자에 미치는 영향을 분석하고 소자를 설계하였다. 특히, smoothing buffor layer를 갖는 임프린트용 스탬프를 도입하여 다음과 같은 성과를 얻을 수 있었다. 먼저 식각공정으로 얻어진 스탬프 상의 도파로 패턴의 측면 거칠기를 링 도파로의 산란손실을 개선함으로써 Q값을 획기적으로 향상시켰다. 또한, 결합영역에서 버스와 링 도파로 간의 간격을 기존 lithography 공정에서는 불가능하였던 $0.2{\mu}m$정도까지 효과적으로 줄이고 제어함으로써 링과 도파로 간의 광파워 결합을 정밀하게 조절할 수 있게 되었다. 제작된 소자의 성능을 살펴보면, 링 반경이 $200{\mu}m$인 경우에 대해 1550 nm 파장 대역에서 Q값은 ~103800이고, 소멸비는 ~11 dB, free spectral range는 1.16 nm였다.