• Title/Summary/Keyword: nanogenerator

Search Result 59, Processing Time 0.028 seconds

Membrane Based Triboelectric Nanogenerator: A Review (막 기반 마찰전기 나노 발전기: 총설)

  • Rabea Kahkahni;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Mechanical energy can be harvested by triboelectric nanogenerators (TENG) from biological and environmental systems. In wearable electronics, TENG has a lot of significance as biomechanical energy can be harvested from the motion of humans, which is applied in vibrational sensors. Wearable TENG is prone to moisture and polytetrafluoroethylene (PTFE) is an excellent hydrophobic material used in these applications. The presence of highly electronegative fluorine atoms leads to very low surface energy. At the same time, the performance of the device increases due to the efficient capture of the electrons on the microporous membrane surface. This similar behavior occurs with polyvinylidene fluoride (PVDF) due to the presence of fluoride atoms, which is relatively less as compared to PTFE.

Flexible nanogenerators용 p-type Li:Cu2O 박막의 특성 연구

  • Jo, Gyeong-Su;Kim, Du-Hui;Jeong, Gwon-Beom;Na, Jeong-Hyo;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.399.1-399.1
    • /
    • 2016
  • p-type 반도체 물질로 알려진 $Cu_2O$에 Li 이온을 doping하면 Cu 이온 자리에 Li이온이 치환되어 p-type의 특성이 더욱 강하게 나타내는 것으로 알려져 있다. 이에 본 연구에서는 RF magnetron sputtering방법으로 성막한 p-type형 $Li:Cu_2O$박막의 특성을 연구하고 이를 $Li:Cu_2O-ZnO$ pn 접합 유연 나노제너레이터에 적용하였다. $Li:Cu_2O$ 성막시 $O_2$ 분압을 변수로 100nm 두께의 $Li:Cu_2O$ 박막을 성막하여 전기적, 광학적, 구조적, 표면 특성을 분석하였다. Hall measurement 측정 결과 $Li:Cu_2O$ 박막은 정공을 Major Carrier로 갖는 p-type 반도체임을 확인하였고, $O_2$의 분압이 증가할수록 Mobility 및 Carrier Concentration이 증가함을 확인하였다. 최적조건에서 광학적 투과도는 약 45%를 보였으며, 투과도를 통해 계산한 band gap은 약 2.03eV로써 일반적인 산화물 반도체의 작은 밴드갭을 가지고 있음을 알 수 있었다. 또한 Ellipsometer분석을 통해 $Ar:O_2$ 비가 $Li:Cu_2O$ 굴절률 및 흡광도에 미치는 영향을 연구하였으며, FE-SEM(Field Emission Scanning Electron Microscope)을 통해 표면을 분석하였다. 또한 XRD(X-ray diffractometer), TEM(Transmission Electron Microscope) 분석을 통하여 상온에서 성막한 $Li:Cu_2O$ 박막의 미세구조를 연구하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석을 통해 일함수를 측정하였다. 이렇게 제작된 p 타입 $Li:Cu_2O$ 박막을 이용하여 $Li:Cu_2O-ZnO$ pn 접합을 구현하고 이를 이용해 유연 나노제너레이터를 제작하였다. 다양한 특성 분석을 통해p-type을 이용한 산화물 박막 기반 유연 나노 제너레이터 특성 향상 메커니즘을 제시하였다.

  • PDF

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

A Development of Energy Storage Monitoring System Architecture for Triboelectric Nanogenerator in the Implant Environment (임플란트 환경에서 TENG 소자를 고려한 효율적인 에너지 저장 모니터링 시스템 개발)

  • Park, Hyun-Moon;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.473-480
    • /
    • 2018
  • In 2012, a new energy capturing method called TENG was suggested for energy harvesting applications. The TENG which captures electric energy in forms of friction or vibration has been researched as a new energy harvesting generation device. However, TENG works on rather high voltage and yields relatively low current, and this requires additional energy conversion and saving methods with either in semiconductive elements or circuitry for its application. Irregular generation from vibration sources rattle under 5Hz especially requires empirical studies. In this article, we suggest a electricity generation platform with energy storage methods. The platform is mounted on large sized animals, and the generation is actively monitored and controlled via Bluetooth-Low Energy to verify the platform.

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

Effects of Mixing Ratio and Poling on Output Characteristics of BaTiO3-Poly Vinylidene Fluoride Composite Piezoelectric Generators (BaTiO3-Poly Vinylidene Fluoride 복합 압전발전기의 출력특성에 미치는 배합비와 분극의 효과)

  • Hee-Tae Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.517-524
    • /
    • 2023
  • BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 ㎂ at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 ℃ for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 ㎂ when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 ㎌ capacitor up to 1.11 V and turn on 10 red LEDs.

Development of a Returnable Folding Plastic Box RFID Module for Agricultural Logistics using Energy Harvesting Technology (에너지 하베스팅 기술을 활용한 농산물 물류용 리턴어블 접이식 플라스틱 상자 RFID 모듈 개발)

  • Jong-Min Park;Hyun-Mo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. In this study, the amount of voltage and current generated was measured by applying the PSD profile random vibration test of the electronic vibration tester and ISTA 3A according to the time of Anodized Aluminum Oxide (AAO) pore widening of the manufactured TENG device Teflon and AAO. The discharge and charging tests of the integrated module during the random simulated transport environment and the recognition distance of RFID were measured while agricultural products (onion) were loaded into the returnable folding plastic box. As a result, it was found that AAO alumina etching processing time to maximize TENG performance was optimal at 31 min in terms of voltage and current generation, and the integrated module applied with the TENG module showed a charging effect even during the continuous use of RFID, so the voltage was kept constant without discharge. In addition, the RFID recognition distance of the integrated module was measured as a maximum of 1.4 m. Therefore, it was found that the surface condition of AAO, a TENG element, has a great influence on the power generation of the integrated module, and due to the characteristics of TENG, the power generation increases as the surface dries, so it is judged that the power generation can be increased if the surface drying treatment (ozone treatment, etc.) of AAO is applied in the future.

Nanostructured energy harvesting devices and their applications for IoT sensor networks (나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구)

  • Yoon, Chongsei;Jeon, Buil;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.719-730
    • /
    • 2021
  • We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.