• Title/Summary/Keyword: nanofluid flow

Search Result 57, Processing Time 0.021 seconds

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.

MHD Boundary Layer Flow and Heat Transfer of Rotating Dusty Nanofluid over a Stretching Surface

  • Manghat, Radhika;Siddabasappa, Siddabasappa
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.853-867
    • /
    • 2020
  • The aim of this study was to analyze the momentum and heat transfer of a rotating nanofluid with conducting spherical dust particles. The fluid flows over a stretching surface under the influence of an external magnetic field. By applying similarity transformations, the governing partial differential equations were trans-formed into nonlinear coupled ordinary differential equations. These equations were solved with the built-in function bvp4c in MATLAB. Moreover, the effects of the rotation parameter ω, magnetic field parameter M, mass concentration of the dust particles α, and volume fraction of the nano particles 𝜙, on the velocity and temperature profiles of the fluid and dust particles were considered. The results agree well with those in published papers. According to the result the hikes in the rotation parameter ω decrease the local Nusselt number, and the increasing volume fraction of the nano particles 𝜙 increases the local Nusselt number. Moreover the friction factor along the x and y axes increases with increasing volume fraction of the nano particles 𝜙.

Squeezing Flow of Micropolar Nanofluid between Parallel Disks

  • Khan, Sheikh Irfanullah;Mohyud-Din, Syed Tauseef;Yang, Xiao-Jun
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.476-489
    • /
    • 2016
  • In the present study, squeezing flow of micropolar nanofluid between parallel infinite disks in the presence of magnetic field perpendicular to plane of the disks is taken into account. The constitutive equations that govern the flow configuration are converted into nonlinear ordinary differential with the help of suitable similarity transforms. HAM package BVPh2.0 has been employed to solve the nonlinear system of ordinary differential equations. Effects of different emerging parameters like micropolar parameter K, squeezed Reynolds number R, Hartmann number M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le for dimensionless velocities, temperature distribution and concentration profile are also discussed graphically. In the presence of strong and weak interaction (i.e. n = 0 and n = 0.5), numerical values of skin friction coefficient, wall stress coefficient, local Nusselt number and local Sherwood number are presented in tabulated form. To check the validity and reliability of the developed algorithm BVPh2.0 a numerical investigation is also a part of this study.

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain;Humaira Sharif;Mohammad Amien Khadimallah;Hamdi Ayed;Abir Mouldi;Muhammad Naeem Mohsin;Sajjad Hussain;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.427-434
    • /
    • 2024
  • Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid

  • Muzamal Hussain;Humaira Sharif;Mohamed A. Khadimallah;Abir Mouldi;Hassen Loukil;Mohamed R. Ali;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.295-302
    • /
    • 2023
  • The characteristics of motile microorganism and three dimensional Darcy-Forchheimer nanofluid flow by a porous rotatable disk with heat generation/absorption is reported. Thermophoretic and Brownian motion aspects are included by utilizing Buongiorno model. Moreover, slip conditions are considered on velocity, thermal, concentration and microorganism. Shooting procedure is implemented to find the numerical results of physical quantities are evaluated parametrically. The different physical parameters like heat sink/source parameter, thermal, Brownian number, thermophoresis parameter, concentration, Peclet number, bioconvected Lewis number, microorganism on concentration and density of motile microorganism distributions is considered. Graphs of concentration and microorganism are plotted to examine the influence of distinct prominent flow parameters.

Numerical Study of Forced Convection Nanofluid in a U-Bend Tube (U-밴드 관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Jo, Sung-Won;Choi, Hoon-Ki;Park, Yong-Gap
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2022
  • Fluid flow and thermal characteristics of laminar nanofluid(water/Al2O3) flow in a circular U-bend tube have been studied numerically. In this study, the effect of Reynolds number and the solid volume fraction and the impact of the U-bend on the flow field, the heat transfer and pressure drop was investigated. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Heat transfer coefficient increases by increasing the solid volume fraction of nanoparticles as well as Reynolds number. Also, the presence of the secondary flow in the curve plays a key role in increasing the average heat transfer coefficient. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles volume fraction.

Cooling System with Nanofluidic Loop Thermosyphon (나노유체 루프형 열사이폰을 이용한 냉각장치)

  • Park Jong-Chan;Lim Taek-Kyu;Lee Chung-Gu;Shin Dong-Ryun;Park Gi-Ho;Rhi Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.246-254
    • /
    • 2006
  • The present study shows the experimental and modeling results of the cooling system using nanofludic loop thermosyphon. the experimental results show that nanofluid is not effective for small scale cooling system. The heat transfer performance is not much improved with the current small scale loop system comparing with the convectional water based loop system. In this study, various effects of nanofluids such as the concentration, the md of particle, host fluid, and heat capacity and so on were investigated. With nanofluid as the working fluid, the flow instability was improved at a certain concentration.

Heat Transfer Enhancement using Nano Particles coated Surface (나노 코팅을 이용한 열전달 향상에 대한 연구)

  • Gang, Myung-Bo;KIm, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.8-14
    • /
    • 2018
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with excellent thermal properties. Therefore, in this study, we investigated the influence of nano particles coated surface for heat transfer enhancement in pure water, oxidized multi-wall carbon nanotube nanofluid (OMWCNT), and oxidized graphene nanofluid (OGraphene). Nanoparticles were coated for 120 sec on the surface, and we measured the CHF at the flow velocities of 0.5, 1.0, and 1.5 m/sec, respectively. As the results, both of the OMWCNT and OGraphene nanofluids increased up to about 34.0 and 40.0%.