• Title/Summary/Keyword: nanofiber structure

Search Result 89, Processing Time 0.027 seconds

Characterization of Carbon Nanofiber Electrode with different Ketjenblack Conducting Material Mixing Amount Using EDLC (Ketjenblack 전도제 혼합량에 따른 EDLC용 탄소나노섬유 전극의 특성)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Carbon nanofibers with nano-sized structures were evaluated as a active material using supercacitor electrode which could store electrochemical energy reversibly. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. A capacitance of carbon nanofiber electrode was increased gradually, depending on the ratio of Ketjenblack as a conducting material. Ketjen Black $20{\sim}25\;wt.%$ ratio in electrode was observed a suitable amount of conducting material by cyclic voltametry results.

Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration (PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.

Synthesis of Aluminum Hydroxide Nanofiber by Electrolysis of Aluminum Plates (전기분해법에 의한 수산화알루미늄 나노화이버 제조)

  • Woo S.H.;Lee M.K.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.108-111
    • /
    • 2006
  • Aluminum hydroxides were synthesized by a simple electrolytic reaction of aluminum plates. The aluminum hydroxide, boehmite (AlO(OH)), was predominantly formed in the application of electrical potential at and above 30V, while the mixture of bayerite ($Al(OH)_3$) and boehmite (AlO(OH)) phases were formed below 20V. The boehmite has a clear fibrous structure controlled on nanometer scale. On the contrary, the bayerite consists of the typical hourglass or semi-hourglass shaped coarse crystals as a result of aggregation of various crystals stacked together. The specific surface area of the boehmite nanofiber was markedly high, approaching at about $302\;m^2/g$.

A Study on Electrical Resistivity Behaviors of PAN-based Carbon Nanofiber Webs

  • Park, Soo-Jin;Im, Se-Hyuk;Rhee, John-M.;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • The influences of various carbonization temperatures on electrical resistivity and morphologies of polyacrylonitrile (PAN)-based nanofiber webs were studied. The diameter size distribution and morphologies of the nanofiber webs were observed by a scanning electron microscope. The electrical resistivity behaviors of the webs were evaluated by a volume resistivity tester. From the results, the volume resistivity of the carbon webs was ranged from $5.1{\times}10^{-1}\;{\Omega}{\cdot}cm$ to $3.0{\times}10^{-2}\;{\Omega}{\cdot}cm$, and the average diameter of the fiber webs was varied in the range of 310 to 160 nm with increasing the carbonization temperature. These results could be explained that the graphitic region of carbon webs was formed after carbonization at high temperatures. And the amorphous structure of polymeric fiber webs was significantly changed to the graphitic crystalline, resulting in shrinking the size of fiber diameters.

Synthesis of Aluminum Monohydroxide Nanofiber by Electrolysis of Aluminum Plates

  • Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.428-429
    • /
    • 2006
  • Aluminum hydroxides were synthesized by a simple electrolytic reaction of aluminum plates. The aluminum monohydroxide, boehmite(AlO(OH)), was predominantly formed by the application of an electrical potential above 30V, while the mixture of the bayerite$(Al(OH)_3)$ and boehmite(AlO(OH)) phases were formed below 20V. The boehmite has a clear fibrous structure which is controlled on a nanometer scale. On the contrary, the bayerite consists of the typical hourglass or semi-hourglass shaped coarse crystals as a result of an aggregation of the various crystals stacked together. The specific surface area of the boehmite nanofiber was remarkably high, reaching about $300m^2/g$.

  • PDF

Preparation of Porous Carbon Support Using Carbon Nanofiber (나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성)

  • 김명수;정상원;우원준;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

A study on the biodegradable novel chitosan nanofiber membrane as a possible tool for guided bone regeneration (키토산 나노 차폐막의 골조직 재생유도 능력에 관한 조직학적 연구)

  • Shin, Seung-Yun;Park, Ho-Nam;Kim, Kyoung-Hwa;Lee, Seung-Jin;Park, Yoon-Jeong;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.543-549
    • /
    • 2004
  • Chitosan has been widely researched as bone substitution materials and membranes in orthopedic/periodontal applications. Chitosan nanofiber membrane was fabricated by chitosan nanofiber using electrospinning technique. The structure of the membrane is nonwoven, three-dimensional, porous, and nanoscale fiber-based matrix. The aim of this study was to evaluate the biocompatibility of chitosan nanofiber membrane and to evaluate its capacity of bone regeneration in rabbit calvarial defect. Ten mm diameter round cranial defects were made and covered by 2 kinds of membranes (Gore-Tex membrane, chitosan nanofiber membrane) in rabbits. Animals were sacrificed at 4 weeks after surgery. Decalcified specimens were prepared and observed by microscope. Chitosan nanofiber membrane maintained its shape and space at 4 weeks. No inflammatory cells were seen on the surface of the membrane. In calvarial defects, new bone bridges were formed at all defect areas and fused to original old bone. No distortion and resorption was observed in the grafted chitosan nanofiber membrane. However bone bridge formation and new bone formation at the center of the defect could not be seen in Gore-Tex membranes. It is concluded that the novel membrane made of chitosan nanofiber by electrospinning technique may be used as a possible tool for guided bone regeneration.

ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes (전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구)

  • Yi, Hwanpyo;Jung, Hyuck;Kim, Okkil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

Comparison of Mechanical Properties of Electrospun Nanofiber Web Layered Systems and Conventional Breathable Waterproof Fabrics (전기방사한 나노섬유 웹 처리소재와 상용 투습방수소재의 역학적 특성 비교)

  • Youn, Bo-Ram;Lee, Seung-Sin
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.391-402
    • /
    • 2010
  • In this study, breathable waterproof materials were prepared by electrospinning. Five kinds of electrospun nanofiber web layered systems with different levels of nanofiber web density, as well as different substrates and layer structures were fabricated, and their mechanical properties (tensile, bending, shear, compression, surface, and thickness & weight) were measured by the KES-FB system and compared with those of conventional breathable waterproof fabrics (densely woven fabric, PTFE laminated fabric and PU coated fabric). The KES-FB measurements demonstrate that the lab-scale nanofiber web layered systems are more flexible and fuller than commercial nanofiber web layered systems, which have a more compact structure than the lab-scale nanofiber web layered systems. Densely woven fabrics and lab-scale nanofiber web layered systems showed lower values of tensile linearity (LT), bending stiffness (B), and shear stiffness (G) than those of PU coated and PTFE laminated fabric. These results indicate that they are more flexible and have less resistance to the shearing movement, corresponding to a more pliable material having a better drape, than PU coated fabrics and PTFE laminated fabrics.

  • PDF

Characterization of Nickel Oxide Nanofibers Obtained by Electrospinning

  • Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.14-18
    • /
    • 2018
  • Nickel oxide nanofibers were synthesized by electrospinning with nickel(II) acetate tetrahydrate and polyvinylpyrrolidone and calcination process. The nanofiber shape was easily detected from the nanofibers with high Ni contents after calcined at $600^{\circ}C$ and the crystal structure of layer-by-layer growth was observed from SEM images at $900^{\circ}C$. XRD and TEM results showed metallic Ni and NiO structure were formed at nanofibers obtained at 600 and $900^{\circ}C$ and the crystallite size was calculated from 25 to 55 nm. The surface of nanofibers was fully oxidized from the deconvoluted Cu 2p and O 1s XPS spectra.