• Title/Summary/Keyword: nanocrystalline metal

Search Result 51, Processing Time 0.021 seconds

Thermal Stability of Mechanically Alloyed Al-(6~3wt.%)Cr-(3~6wt/%)Zr Alloys (기계적 합금화법으로 제조된 Al-(6~3wt.%)Cr-(3~6wt.%)Zr 합금의 열적 안정성)

  • Yang, Sang-Seon;Lee, Gwang-Min
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.403-408
    • /
    • 2000
  • The Al-Cr-Zr composite metal powders were prepared by mechanical alloying and consolidated by vacuum hot pressing. The microstructural characteristics and the thermal stability of the MA Al-Cr-Zr alloys were evaluated by means of microhardness measurement, XRD and TEM in order to develop high temperature, high strength aluminum alloys. The mechanical alloying was conducted in attritor with 300rpm for 20 hours. The density of the vacuum hot pressed Al-Cr-Zr alloy reached at 97% of theoretical one. After exposing at $300^{\circ}C$ for 100 hours, there is almost no variation in hardness change of the MA alloys. Even after exposing at $ 500^{\circ}C$ for 100 hours, the hardness of the alloy was decreased within 6% of the initial value. The fine stable $Al_3Zr\;and\; Al_{13}Cr_2$ intermetallics were formed at the stage of consolidation and heat treatment in aluminum matrix. The good thermal stability of the MA Al-Cr-Zr alloy can ab attributed to the role of the dispersoids, inhibiting grain growth of nanocrystalline, and the final grain size after heat treatment was less than 150nm.

  • PDF