• Title/Summary/Keyword: nanocompoiste

Search Result 3, Processing Time 0.02 seconds

Membrane Application of Poly(lactic acid) (Poly(lactic acid)의 분리막에의 응용)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Dorgan J.R.
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.85-105
    • /
    • 2006
  • Poly(lactic acid) is a linear aliphatic thermoplastic polyester, produced by the ring-opening polymerization of lactides and the lactic acid monomers, which are obtained from the fermentation of sugar feed stocks, corn, etc. PLA has high mechanical, thermal plasticity, fabric-ability, and biocompatibility, So PLA is a promising polymer far various end-use applications. In recent time, the intercalation of polymers from either solution or the melt in the silicate galleries of clay is the best technique to prepare nanocompoiste material which often exhibit remarkable improvement of mechanical, thermal, optical and physicochemical properties when compared with the pure polymer or conventional composites. Layered silicate is naturally abundant, economic, and more importantly benign to the environment.

Elastomer Nanocomposites(I) (엘라스토머 나노복합체(I))

  • Bang, Dae-Suk;Kye, Hyoung-San;Cho, Ur-Ryong;Min, Byung-Gak;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.22-33
    • /
    • 2009
  • Recently, elastomer-nanocomposites reinforced with low volume fraction of nanofillers have attracted great interest due to their fascinating properties. The incorporation of nanofillers, such as, layered silicate clays, carbon nanotubes, nanofibers, calcium carbonate, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, dynamic mechanical, barrier properties, flame retardancy, etc. The properties of nanocomposites depend greatly on the chemistry of polymer matrices, nature of nanofillers, and the method in which they are prepared. The uniform dispersion of nanofillers in elastomer matrices is a general prerequisite for achieving desired mechanical and physical characteristics. In this paper, current developments in the field of elastomer nanocomposites reinforced with layered silicates, silica, carbon nanotubes, nanofibers and various other nanoparticles have been addressed.

Ternary Phased Graphene/Silica/EVOH Nanocomposites Coating Films (삼성분계 그래핀/실리카/EVOH 나노 복합 코팅 필름)

  • Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • Ternary phased graphene/silica/EVOH nanocomposite coating materials were prepared via sol-gel process and solution blending process. From both SEM observations and XRD analysis, the exfoliated structure and dispersion state of graphene nanosheets and silica particles in the nanocomposites as well as the intercalated and exfoliated structure of the prepared graphene oxide were confirmed. The incorporation of GrO and silica at appropriate content resulted in remarkable improvement in oxygen barrier property of the ternary phased nanocompoiste-coated BOPP films, compared with that of binary(silica/EVOH) phased nanocomposite coating films, however, at excess amount of GrO and silica, very slight variation was observed due to incomplete exfoliation, dispersion of graphene tactoids, and formation of micro cracks in the silica clusters. In addition, the transparency of nanocomposite-coated film was investigated by measuring the light transmittance as a function of GrO contents, suggesting the possibility for the application of food packaging films.