• Title/Summary/Keyword: nano-systems

Search Result 995, Processing Time 0.026 seconds

Structural and optical properties of heat-treated Ga doped ZnO thin films grown on glass substrate by RF magnetron sputtering (RF 마그네트론 스퍼터링 법으로 유리 기판 위에 성장 시킨 Ga 도핑된 ZnO 박막의 열처리에 따른 구조적, 광학적 특성 평가)

  • Lee, J.S.;Kim, G.C.;Jeon, H.H.;HwangBoe, S.J.;Kim, D.H.;Seong, C.M.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • We have investigated the effect of annealing on the structural and optical properties of polycrystalline Ga doped ZnO (GZO) films grown on glass substrates by RF-magnetron sputter at room temperature. The structural and optical properties of as-grown GZO films were characterized and then samples were annealed at $400{\sim}600^{\circ}C$ in $N_2$ ambient for 30, 60 minutes, respectively. The field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to measure the grain size and the crystalline quality of the films. We found that the crystalline quality was improved and the grain size tends to be increased. The optical properties of GZO thin films were analyzed by UV-VIS-NIR spectrophotometers. It is found that optical properties of thin films are increased by annealing and can be used for transparent electrode application. We believe that the appropriate post-growth heat treatment could be contributed to the improvement of GZO-based devices.

Electrochemical properties of heat-treated multi-walled carbon nanotubes (열처리된 탄소나노튜브 상대전극의 전기화학적 특성 연구)

  • Lee, S.K.;Moon, J.H.;Hwang, S.H.;Kim, G.C.;Lee, D.Y.;Kim, D.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • We have studied the effect of heat treatment of multi-walled carbon nanotubes (MWNTs) as a counter electrode on the electro-chemical properties of dye-snsitized solar cells. MWNTs on the p-type Si substrate were synthesized by thermal chemical vapor deposition (CVD) using Fe catalysts. We prepared the two types of MWNTs samples with the different diameters. The rapid thermal annealing (RTA) treatment for the MWNTs was carried out at the growth temperature ($900^{\circ}C$) for 1 minute with $N_2$ gas atmosphere. The structural, electrical and electrochemical properties of MWNTs were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, 2-point probe station and electrochemical impedance spectroscopy (EIS). The I(D)/I(G) ratio of heat-treated MWNTs in Raman spectra was considerably decreased. It was also found that the heat-treated MWNTs showed better redox reaction of iodide at the interface between MWNTs surface and electrolyte than that of as-grown MWNTs. The redox resistance value of heat-treated electrodes was measured to be much lower than that of as-grown electrode at the interface. As a result, the counter electrode using the heat-treated MWNTs showed better electrochemical properties.

Development of Nipkow Disk for High-Speed Confocal Probe Using Micro-lens and Pinhole Disks (마이크로 렌즈 디스크와 핀홀 디스크를 이용한 고속 공초점용 닙코 디스크 개발)

  • Kim, Gee Hong;Lee, Hyung Seok;Kim, Chang Kyu;Lim, Hyung Jun;Lee, Jae Jong;Choi, Kee Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.636-641
    • /
    • 2014
  • This paper discusses the fabrication process for a Nipkow disk using micro-lens and pinhole disks. The confocal measuring system that uses the Nipkow disk has the advantage in measuring speed, because the Nipkow disk can simultaneously provide confocal images of all pixels in a CCD camera without requiring a lateral scanning unit. A micro-lens configuration, which focuses illumination on a pinhole, overcomes the low optical efficiency of the Nipkow disk system and allows its use in practical applications. This paper describes how to design the Nipkow disk in terms of numerical aperture, particularly for measuring the height of solder bumps in packaging application and for hybrid processes combining mechanical and semiconductor processes.

Technology for Roll-based Nanoimprint Lithography Systems (롤 기반 나노임프린트 리소그래피 시스템 기술)

  • Lim, Hyungjun;Lee, Jaejong;Choi, Kee-Bong;Kim, Geehong;Lee, Sunghwi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Roll-based, nanoimprint lithography (Roll-NIL) is one effective method to produce large-area nanopatterns continuously. Systems and processes for Roll-NIL have been developed and studied for more than 15 years. Since the shapes of the stamp and the substrate for Roll-NIL can be plates, films, and rolls, there exist many concepts to design and implement roll-NIL systems. Combinations and variations of contact-methods for variously shaped stamps and substrates are analyzed in this paper. The contact-area can be changed by using soft materials such as polydimethylsiloxane (PDMS) or silicone rubber. Ultraviolet (UV) sources appropriate for the roll-to-plate or roll-to-roll process are introduced. Finally, two roll-to-plate nanoimprint lithography systems are illustrated.

Effects of Aluminum Chloride Concentrations on Structural and Optical Properties of Al-doped ZnO Thin Films Prepared by the Sol-Gel Method (졸겔법으로 제작된 Al-doped ZnO 박막의 Aluminum Chloride 농도에 따른 구조적 및 광학적 특성)

  • Cho, Guan Sik;Kim, Min Su;Yim, Kwang Gug;Lee, Jaeyong;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.847-854
    • /
    • 2012
  • Al-doped ZnO (AZO) thin films were grown on quartz substrates by the sol-gel method. The effects of the Al mole fraction on the structural and optical properties of the AZO thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-VIS spectroscopy. The particle size of the AZO thin films decreased with an increase in Al concentrations. The optical parameters, the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity, were studied in order to investigate the effects of Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at an infinite wavelength of the AZO thin films were affected by the Al incorporation. The optical conductivity of the AZO thin films also increased with increasing photon energy.

Behavioral Characteristics of Nano-Stages According to Hinge Structure (힌지 형태에 따른 나노 스테이지의 거동특성)

  • Oh, Hyun-Seong;Lee, Sung-Jun;Choi, Soo-Chang;Park, Jung-Woo;Lee, Deug-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.23-30
    • /
    • 2007
  • Nano-stages are used in many ultra-precision systems, such as scanning probe microscope(SPM), optical fiber aligners, ultra-precision cutting, measuring systems, and optical systems. It is difficult to find the solutions because the performances and characteristics of nano-scale motion stage are determined by various factors. To understand effects of nano-scale motion stage, three types of hinge structures were designed and manufactured. Each hinge structures were designed following with the results of simulation. And from the result of experiments, hysteresis, displacement, and accuracy were compared with each hinge structures.

Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-containing PC/ABS Composites (다중벽 탄소나노튜브를 함유한 PC/ABS 복합재의 마모 특성 및 다중벽 탄소나노튜브의 유출 평가)

  • Lee, Hyun-Woo;Kim, Kyung-Shik;Lee, Jae-Hyeok;Kim, Hyo-Sop;Kim, Jae-Ho;Oh, Dong-Hoon;Ryu, Sang-Hyo;Jang, Young-Chan;Kim, Jae-Hyun;Lee, Hak-Joo;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.278-283
    • /
    • 2014
  • Carbon nanotubes (CNTs) are used in various composite materials to enhance electrical, thermal and mechanical properties of composite materials. In this study, we investigate the wear characteristics of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends containing multi-walled carbon nanotubes (MWCNTs). PC/ABS blends are commonly used in many industrial applications such as cellular phones and display cases and MWCNTs have been added to the PC/ABS blends to improve their electromagnetic interference shielding (EMS). We performed wear tests on PC/ABS blends containing MWCNTs under reciprocating linear sliding conditions with chrome steel balls as a counterpart material. The normal loads were 10, 30, 50, 70, 100 N, the sliding speed was 10 mm/s, the stroke length was 15 mm, and the tests lasted 900 s. The MWCNTs included in the PC/ABS blends lower the wear volume and friction coefficient of the composites. We analyzed the wear debris collected from the composites during the tests in terms of the MWCNT concentration using inductively coupled plasma optical emission spectroscopy. The results show that the quantity of MWCNTs in the debris is proportional to the concentration of MWCNTs in the composite, indicating that the exposure of the MWCNTs to environments by wear could be increased with their concentration in the composite.

Roll-to-Roll Contact Printer with Multiple Printing Methods (복합 접촉 인쇄 방식의 롤투롤 프린팅 장비)

  • Kim, Chung-Hwan;Kim, Myoung-Sub;You, Ha-Il;Choi, Byoung-Oh;Lee, Seung-Hyun;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.7-10
    • /
    • 2010
  • Recently, roll-to-roll printers are being developed actively by various research teams such as research institutes, universities and companies for the application of printed electronics. The printing methods that are widely used in the roll-to-roll printing equipments are gravure, gravure and flexo, which depend on the inks used and electronic devices produced. In general, a single printing unit of roll-to-roll printing equipment adopts only one printing method and this method is not changeable, which limits the application fields of the developed printing equipments. In this paper, the roll-to-roll printer, in which the printing unit has the novel design concept, is described.

Fabrication of Fluorine Doped Diamond-Like Carbon Stamp for UV-Nanoimprint Lithography (UV 나노임프린트 리소그래피를 위한 불화 함유 다이아몬드 상 탄소 스탬프의 제작)

  • Ozhan Altun Ali;Jeong Jun-Ho;Rha Jong-Joo;Choi Dae-Geun;Kim Ki-Don;Lee Eung-Sug
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.145-146
    • /
    • 2006
  • A fluorine-doped diamond-like carbon (F-DLC) stamp which has high contact angle, high UV-transmittance and sufficient hardness, was fabricated using the following direct etching method: F-DLC is deposited on a quartz substrate using DC and RF magnetron sputtering, PMMA is spin coated and patterned using e-beam lithography and finally, O2 plasma etching is performed to transfer the line patterns having 100 nm line width, 100 nm line space and 70 nm line depth on F-DLC. The optimum fluorine concentration was determined after performing several pre-experiments. The stamp was applied successfully to UV-NIL without being coated with an anti-adhesion layer.

  • PDF

Fabrication of CNT Flexible Field Emitters and Their Field Emission Properties

  • Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.384-384
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been studied as an ideal material for field emitters due to the high aspect ratio, excellent electrical property and good mechanical strength. There were many reports on CNT emitters fabricated on rigid substrates, but rare reports about CNT flexible field emitters. Recently, we considered that CNTs can be a good candidate for a flexible field emitter material because of their excellent Young's modulus and elasticity, which could not be achieved with metal tips or semiconducting nanowire tips. In this work, we demonstrated the CNT flexible field emitters fabricated by a simple method and studied the field emission properties of the CNT flexible field emitters under various bending conditions. The flexible field emitters showed stable and uniform emission characteristics. Especially, there is no remarkable change of the field emission properties at the CNT flexible field emitters according to the bending conditions. The CNT flexible field emitters also exhibited a good field emission performance like the low turn-on field and high emission current. Therefore, we suggest that the CNT flexible emitters can be used in many practical applications under different bending conditions.

  • PDF