• Title/Summary/Keyword: nano-sized WC

Search Result 16, Processing Time 0.03 seconds

Influence of Grain Growth Inhibitors and Co in Nano WC Materials (나노 텅스텐 카바이드 재료 내 입성장 억제제와 코발트의 영향)

  • Lim, Hyung Sup;Hur, Man Gyu;Kim, Deug Joong;Yoon, Dae Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.442-446
    • /
    • 2014
  • Influences of Co and inhibitors from nano-sized WC materials were observed in the sintering process. VC and $Cr_3C_2$ were used as inhibitors. The crystal structure and surface images of sintered nano-sized WC materials, as functions of Co and inhibitors, were evaluated by XRD and FE-SEM analyses. The relative densities of sintered nano-sized WC materials did not change even with increased quantity of Co and increased temperature. The density of sintered nano-sized WC materials with inhibitors was lower than that of sintered nano-sized WC materials without inhibitors. No difference in hardness due to change of inhibitors was found.

Development of Nano-sized WC Powder for Hardmetals

  • Yamamoto, Yoshiharu;Mizukami, Masahiko
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.342-343
    • /
    • 2006
  • In order to develop the nano-sized WC powder that improved the hardness of hardmetals, carbothermal reduction of WO3 by C was examined by using the thermogravimetric analysis. At the direct carburization reaction path of $WO_3{\rightarrow}WO_{2.72}{\rightarrow}WO_2{\rightarrow}W{\rightarrow}W_2C{\rightarrow}WC$, the nano-sized grain was generated at the reaction stage $WO_{2.72}$ to $WO_2$ and W. For trial production, the intermediate products which consists of metal and carbide phases obtained by the first heating has been carburized to the final WC powder. We succeeded in the development of the WC powder of about 70nm. In addition, the nano-sized WC powder in which the vanadium of the most effective grain growth inhibitor was uniformly dispersed was developed.

  • PDF

Hybrid Composite Nano-sized WC-Co Cemented Carbide

  • Park, Sun-Yong;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.640-641
    • /
    • 2006
  • To improve the mechanical properties of WC-Co cemented carbides, the dual composite was studied. The compositions of granule and matrix were nano-sized WC-6 wt% Co(granule) and normal sized WC-20 wt% Co(matrix), respectively. The granules were grouped 50, 100 and $150\;{\mu}m$ and mixed with WC and Co powders as the volume fractions of granule to matrix were 50 to 50, 40 to 60 and 30 to 70. These compacts were sintered at $1380^{\circ}C$ for 10 minutes in vacuum. The microstructure, transverse rupture strength and wear resistance were investigated.

  • PDF

Fabrication of Nano-sized WC/Co Composite Powder by Direct Reduction and Carburization with Carbon

  • Lee, Dong-Ryoul;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.642-643
    • /
    • 2006
  • Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of $600{\sim}800^{\circ}C$ for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at $800^{\circ}C$ for 5 hours.

  • PDF

WC-Co coating by cold spray deposition (Cold spray를 이용한 WC-Co 코팅)

  • 김형준;황순영;권영각
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.311-313
    • /
    • 2004
  • WC-12-17%Co powders with nano- and micro-structures were deposited by cold spray process using nitrogen and helium gases. The results show that there is no detrimental phase transformation and/or decarburization of WC by cold spray deposition as expected. It is also observed that nano-sized WC in the feedstock powder is maintained in the cold spray deposition. It is demonstrated that it is possible to fabricate the nano-structured WC-Co coating with low porosity and very high hardness (-2050 HV) by cold spray deposition with reasonable powder preheating.

  • PDF

Synthesis of Nano-sized Tungsten Carbide Powders by Vapor Phase Reaction of Tungsten Ethoxide (텅스텐 에톡사이드의 기상 반응을 이용한 초미립 WC 분말의 합성)

  • 가미다;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Nano-sized WC powders were synthesized by vapor phase reaction using the precusor of tungsten ethoxide under helium and hydrogen atmosphere. The phases of the powder were varied with reaction Bone and gas flow rate. The powder size was about 30nm in diameter, and the tungsten carbide powder was coated by carbon layer. The synthesis of nano-sized WC powders was promoted as the hydrogen gas flow rate became higher. Inversely, tungsten oxide was formed by increasing the flow rate of helium gas. The synthesized powders were analyzed by XRD, FE-SEM, carbon analyzer etc.

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF

Production of Nanosized WC Powder by Vapor Phase Reaction

  • Cho, Gi-Chul;Lee, Gil-Geun;Ha, Gook-Hyun;Kim, Byung-Kee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.625-626
    • /
    • 2006
  • In the present study, the focus is on the synthesis of nanosized WC powder by the chemical vapor condensation proces. The synthesized W-C system powder by the CVC process shows W2C, W, WO3 phases and can not shows WC phase. After recarburization heat treatment under mixture gas atmosphere of argon and hydrogen gases, the synthesized W-C system powder fully transformed to the pure WC. The synthesized WC powder after recarburization heat treatment has an average particle size of 20 nm. The nano-sized WC powder can be prepared by the combination of the CVC process and heat treatment methods.

  • PDF