• 제목/요약/키워드: nano-size particle

검색결과 725건 처리시간 0.031초

입자 측정방법을 통한 초기 수트입자 연구 (Study of Incipient Soot Particles with Measuring Methodologies)

  • 이의주
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF

환원침전법을 이용한 수용액으로부터 은 나노분말의 제조 연구 (Preparation of Ag Nano-Powder from Aqueous Silver Solution through Reductive Precipitation Method)

  • 이화영;오종기
    • 자원리싸이클링
    • /
    • 제14권6호
    • /
    • pp.21-27
    • /
    • 2005
  • 국내 은 함유 폐자원의 고부가가치 제품화를 위한 연구의 일환으로써 sodium formaldehydesulfoxy와 ascorbic acid를 각각 환원제로 사용한 Ag 나노분발의 제조실험을 수행하였다. Ag수용액은 질산은을 소정 농도로 증류수에 용해시켜 사용하였으며, Ag미립자의 응집방지를 위한 분산제로는 Tamol NN8906, PVP, SDS 및 caprylic acid를 각각 사용하었다. 환원반응을 통하여 제조한 Ag 미립자는 입도분석기 및 TEM측정을 통하여 morphology와 평균입도를 측정하였다. sodium formaldehydesulfoxylate 에 의한 은의 환원을 위해서는 이론치의 1.4배를 첨가해 주어야 하는 것으로 나타났으며, ascorbic acid와는 달리 생성된 Ag 입자가 너무 크게 성장하는 문제점이 있었다. 분산제에 따른 Ag 입자의 특성을 살펴본 결과, Tamol 및 PVP를 사용한 경우에는 bimodal distribution을 보였으나, SDS 와 caprylic acid의 경우에는 수십 nm에서 $100{\mu}m$에 이르는 매우 broad한 입도분포를 보였다.

Engine Exhaust Particle Sizer를 통한 GDI 자동차에서 발생하는 나노미세입자 배출특성 분석 (Nano-particles emission characteristics of GDI vehicles using Engine Exhaust Particle Sizer)

  • 장지환;이종태;김기준;김정수;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.95-96
    • /
    • 2014
  • In this study, the nano-particle emitted from Gasoline Direct Injection(GDI) vehicles was measured using the Engine Exhaust Particle Sizer(EEPS) on a chassis dynamometer. In addition, driving mode were divided into cold start mode(CVS-75, NEDC) and hot start mode(NIER-6, NIER-9) to evaluated the characteristics in the various operating conditions. The Particle Number(PN) concentration was analyzed for various driving patterns, i.e., acceleration, deceleration, idling, cruising and the phases of mode. In a result, Total concentration of PN for size was concentrated from 50 to 100 nm and acceleration represents the highest concentration among the driving pattern. It is believed that the increases quantity of fuel, and mixture will be richer than other patterns.

  • PDF

화약제조 공정의 초임계 유체 응용 (Application of Supercritical Fluid in Energetic Materials Processes)

  • 송은석;김화용;김현수;이윤우
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성 (Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures)

  • 이화준;류성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

승용 디젤 엔진의 배기가스재순환 및 연료 분사 압력 제어전략에 따른 연소, 입자상 물질 및 질소 산화물 배출 특성에 관한 연구 (Experimental Evaluation of EGR and Fuel Injection Pressure on Combustion, Size-resolved Nano-particle and NOx Emissions Characteristics in an Advanced Light-duty Diesel Engine)

  • 유정빈;고아현;장원욱;백승하;진동영;명차리;박심수;한정원
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.8-15
    • /
    • 2014
  • In order to satisfy stringent future emission regulation in diesel engines, systematic approaches to mitigate the harmful exhaust emissions were developed, such as engine hardware, fuel injection equipment, engine control, and after-treatment system. In this study, to improve the nano-particle and NOx emissions from a state-of-the-arts diesel engine, effect of various EGR and fuel injection pressure with combustion analysis were evaluated. Size-resolved nano-particle and NOx emissions showed trade-off characteristics with various EGR rate and increment of fuel injection pressure.

Dispersion of Alloy 625 Nanoparticles in Ethanol

  • Lee, Eun-Hee;Lee, Min-Ku;Rhee, Chang-Kyu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.673-674
    • /
    • 2006
  • The influence of several experimental parameters on the formation of stable Alloy 625 nanoparticles dispersion in ethanol was investigated. Several analyzing methods were applied, like transmission profiles measured by Turbiscan, transmission electron microscopy, X-ray diffraction, gas chromatography, and particle size analyzer. The correlation among the increase of particle sizes, caused by nanoparticle coalescence and collision, concentration of dispersant and time was presented and discussed. The optimum conditions for the formation of stable dispersion are evaluated.

  • PDF

폐(廢) ITO 타겟으로부터 분무열분해(噴霧熱分解) 공정(工程)에 의한 ITO 나노 분말(粉末) 제조(製造) (Preparation of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process)

  • 유재근;강성구;손진군
    • 자원리싸이클링
    • /
    • 제16권1호
    • /
    • pp.28-36
    • /
    • 2007
  • 폐 ITO 타겟을 염산에 용해시킨 복합 산용액을 원료로 하여 자체기술에 의해 개발한 분무열분해 반응장치를 통하여 평균입도가 50nm이하인 나노 ITO 분말을 제조하였으며, 반응온도 및 원료용액의 농도 등의 반응인자들의 변화에 따른 ITO 분말의 특성을 파악하였다. 반응온도가 $800^{\circ}C$로부터 $1100^{\circ}C$로 변화함에 따라 생성된 ITO 분말의 평균 입도는 40nm로부터 100nm정도까지 증가하고 있었으며, 조직도 점점 치밀화되면서 각각의 입자들이 독립된 다각형 형태를 나타내었으며, 입도분포는 더욱 불균일하게 나타나고 있었다. 또한 반응온도 증가에 따라 XRD 피크의 강도는 증가하였으며 비표면적은 감소하고 있었다. 원료용액 내의 인듐 성분의 농도가 50g/l로부터 400g/l로 증가됨에 따라 생성된 ITO 분말의 평균입도는 점점 증가하는 반면 입도분포는 더욱 불균일 하였다. 농도가 50g/l인 경우에는 ITO 분말의 평균입도는 30nm 이하이면서 입도분포는 비교적 균일하게 나타나고 있었다. 반면 농도가 포화농도에 가까운 400g/l인 경우에는 분말들의 입도분포는 20nm 정도부터 100nm 이상까지 공존하는 매우 불균일한 형태를 나타내고 있었다. 농도가 증가함에 따라 XRD 피크의 강도는 점점 증가하였으며 비표면적은 점점 감소하였다.

O/W 나노에멀젼 분산안정성에 미치는 보관온도의 영향 (Effect of Storage Temperature on the Dispersion Stability of O/W Nano-emulsions)

  • 이예은;유인상
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.385-391
    • /
    • 2014
  • In this study, the emulsion dispersion stability of optimizing storage temperature was investigated. The system was based on oil/water (O/W) emulsions. In order to evaluate the stability, mean diameter of droplet was measured as a function of temperature with various mixed hydrophilic lipophilic balance (HLB). In addition, the correlations between phase inversion temperature (PIT) and the optimum storage temperature were probed. In this system, majority of the smallest droplet was shown at temperature of $20^{\circ}C$ below PIT. Whether the temperature was increased or decreased from the optimum, size of the droplet increased. According to the mixed HLB, the particle size and optimum storage temperature were also affected. As the concentrations of surfactant were increased, the size of particle decreased with lower optimum temperature for storage. If the surfactant (4 wt%) were mixed with HLB, the optimum storage temperature was $21^{\circ}C$ for maintaining the size of smallest droplet at 108.3 nm in diameter. At above optimum condition, increased size of particle was observed approximately 4 % increases from 108.2 nm to 112.3 nm after 600 hours. The size of particle in emulsion was maintained stably without any considerable effect of Ostwald ripening phenomena at the optimum storage temperature with low polydispersity index.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.