• 제목/요약/키워드: nano-powders

검색결과 601건 처리시간 0.022초

고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가 (Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties)

  • 안동현;김우열;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조 (Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires)

  • 김원백;박제신;서창열;이재천;오용준;문정일
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

녹색과 청색 형광체 나노 분말의 합성 및 특성 평가 (Formation and Characterization of Green and Blue Phosphor Nano Powders)

  • 권오성;유영철;김상민;김기도;임형섭;김희택
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.565-569
    • /
    • 2009
  • 녹색과 청색의 나노 형광체 합성에 있어서 입자 형상 및 입자 크기의 변화를 알아보기 위해 액상법으로 진행하였으며, 이를 바탕으로 최종적으로 녹색 형광체의 경우 약 80 nm를, 그리고 청색 형광체의 경우 약 60 nm급의 나노 형광체 분말 합성이 가능하였다. 합성된 두 가지의 $Zn_2SiO_4$ : Mn 녹색 형광체와 BAM : Eu의 청색 나노 형광체 분말의 특성 평가를 비교하였으며, 그 결과 PL 특성면에서 녹색 형광체인 $Zn_2SiO_4$ : Mn이 BAM : Eu의 청색 형광체 대비 높은 형광성을 보여주었다.

전기선폭발법에 의한 Cu-Ni-P 합금 나노 분말 제조 (Cu-Ni-P Alloy Nano Powders Prepared by Electrical Wire Explosion)

  • 김원백;박제신;서창열;이재천;김정환;오용준
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.108-115
    • /
    • 2007
  • Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and $Ni_3P$ phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of $Ni_3P$ phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.

나노크기 Sn 분말의 산화열처리에 의한 SnO2분말의 합성 및 미세조직 특성 (Synthesis of SnO2 Powders by Oxidation Heat Treatment of Nano-sized Sn Powders and Their Microstructural Characteristics)

  • 오승탁;이성일;주연준
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.287-291
    • /
    • 2007
  • Oxidation behavior and microstructural characteristics of nano-sized Sn powder were studied. DTA-TG analysis showed that the Sn powder exhibited an endothermic peak at $227^{\circ}C$ and exothermic peak at $560^{\circ}C$ with an increase in weight. Based on the phase diagram consideration of Sn-O system and XRD analysis, it was interpreted that the first peak was for the melting of Sn powder and the second peak resulted from the formation of $SnO_2$ phase. Microstructural observation revealed that the $SnO_2$ powder, heated to $1000^{\circ}C$ under air atmosphere, consisted of agglomerates with large particle size due to the melting of Sn powder during heat treatment. Finally, fine $SnO_2$ powders with an average size of 50nm can be fabricated by controlled heat treatment and ultrasonic milling process.

STS 316L 소결재료의 내식특성에 미치는 합금원소 첨가방법의 영향 (The Effect of the Additive Elements Alloying Method on the Corrosion Resistance of Sintered STS 316L)

  • 김혜성;김유영;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.203-209
    • /
    • 2013
  • In this study, STS 316L powders with 3 wt.% Cu and 1 wt.% Sn known as corrosion-resistance reinforcement elements, are prepared to make different kinds of specimens, in which, 3 wt.% Cu and 1 wt.% Sn are added in different forms by mixing, alloying and fully alloying. After sintering in the same condition, the corrosion resistance, wear resistance and their mechanical properties of specimens are tested respectively. According to the comparison, STS 316L specimen sintered at $1270^{\circ}C$ showed the most excellent mechanical property: HRB 78 (hardness), 1130.7 MPa (RCS), 26.6% (Fraction Wear), It was similar with the specimen made of STS316L and fully alloyed Cu and Sn powders, meanwhile, the latter one appears the best corrosion resistance, 75hrs-salt immersion test results. In addition, the specimens with Cu and Sn powders additive showed relatively worse wear resistance in compared with STS316L specimen.

수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용 (Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials)

  • 임진영;안정석;안중호
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

Characterizations of nano-zinc doped hydroxyapatite to use as bone tissue engineering

  • Abdel-Ghany, Basma E.;Abdel-Hady, Bothaina M.;El-Kady, Abeer M.;Beheiry, Hanan H.;Guirguis, Osiris W.
    • Advances in materials Research
    • /
    • 제4권4호
    • /
    • pp.193-205
    • /
    • 2015
  • Contamination by bacterial strands is a major problem after bone replacement surgeries, so there is a great need to develop low cost biocompatible antibacterial bioactive scaffolds to be used in bone tissue engineering. For this purpose, nano-zinc doped hydroxyapatite with different zinc-concentrations (5, 10 and 15 mol%) was successfully prepared by the wet chemical precipitation method. The prepared powders were used to form porous scaffolds containing biodegradable Ca-cross-linked alginate (5%) in order to enhance the properties of alginate scaffolds. The scaffolds were prepared using the freeze-gelation method. The prepared powders were tested by X-ray diffraction; transmission electron microscope and Fourier transform infrared analyses, while the prepared scaffolds were investigated by Fourier transform infrared analyses, thermogravimetric analyses and measurement of the antibacterial properties. Best results were obtained from scaffold containing 15% mol zinc-doped hydroxyapatite powders and 5% alginate concentration with ratio of 70:30.

초임계 유체를 이용한 나노크기 $TiO_2$ 분말제조 및 소결특성 (Preparation and Sinterability of Nano-Size $TiO_2$ Powders Using Supercritical Fluids)

  • 송정환;이정석;박인석;임대영
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.625-631
    • /
    • 2000
  • In this study, the characteristics and sinterablities of TiO2 powders which were fabricated on sol-gel process and supercritical fluid process were examined. The powders fabricated on sol-gel process were amorphous. The particle size and shape were changed with the amount of water used for hydrolysis of titanium ethoxide. The powders were changed from amorphous to crystalline by heating at 400℃. The crystalline anatase TiO2 powders were directly prepared in ethanol supercritical fluid condition that temperature was 270±3℃ and pressure was 7.3 MPa. It's primary crystalline size was 20 nm and agglomerated as spherical shape whose size was 0.7∼1㎛. The powders prepared on sol-gel process were not sintered densely at 900℃ because of abnormal grain growth. However, the powders which prepared on supercritical fluid process were sintered densely at the comparatively low temperature of 800℃ by ideal growth of grain, which are fired at 900℃.

  • PDF

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.