• Title/Summary/Keyword: nano-material

Search Result 2,454, Processing Time 0.024 seconds

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Fabrication of Porous Cellulose Acetate Propionate/Polybutylene Succinate Microfibers by High Speed Centrifugal Spinning (초고속 원심방사에 의한 아세트산프로피온산 셀룰로오스/폴리부틸렌 숙시네이트 다공성 마이크론 섬유 제조)

  • Tae Young Kim;Mi Kyung Kim;Jinsoo Kim;Jungeon Lee;Jae Hoon Jung;Youngkwon Kim;Tae Hyeon Kim;Ki Young Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.239-245
    • /
    • 2023
  • Cellulose is an abundant biodegradable material in nature with excellent properties, but due to its poor processability, it has been widely studied for processing through modification. Cellulose acetate propionate (CAP) is a cellulose derivative in which the hydroxyl group of cellulose is replaced by acetyl and propionyl groups. CAP has several advantages, such as excellent solubility, structural stability, light and weather resistance, and good transparency. Porous nanofibers with excellent specific surface area, which can be applied in various fields, can be easily formed by the phase separation method using highly volatile solvents. High speed centrifugal spinning is a nano/micro fiber preparation method with advantages such as fast spinning and easy alignment control. In this study, a CAP/polybutylene succinate (PBS) spinning solution with chloroform as solvent was prepared to prepare porous microfibers and the fiber morphology was examined as a function of the disk rotation speed in an high speed centrifugal spinning device.

Evaluation of the Shield Performance of Lead and Tungsten Based Radiation Shields (납과 텅스텐 기반 차폐체의 성능 비교 평가)

  • Jeong-Hwan Park;Hyeon-Seong Lee;Eun-Seo Lee;Hyo-Jeong Han;Yun-Hee Heo;Jae-Ho Choi
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2023
  • This study was intended to evaluate the shielding rate of radiation shields manufactured using 3D printers that have recently been used in various fields by comparing them with existing shields made of lead, and to find out their applicability through experiments. A 3D printer shield made of tungsten filament 1 mm, 2 mm, 4 mm shield, RNS-TX (nanotungsten) 1.1 mm, lead 0.2 mmPb, and 1mmPb were exposed to 99mTc, 18F, and 201TI for 15, 30, 45 minutes, and 60 minutes after measuring cumulative dose three times. Based on this, the shielding rate of each shield was calculated based on the dose in the absence of the shield. In addition, 99mTc, 18F, and 201TI were located 100 cm away from the phantom in which the OSLD nano Dot device was inserted, and if there was no shield for 60 minutes, the dose of thyroid was measured using 1.0 mm of lead shield, 1.1 mm of RNS-TX shield, and 2 mm of tungsten shield made by 3D printer. The use of shields during radiation shielding emitted from open radiation sources all resulted in a reduction in dose. The radiation dose emitted from the radionuclides under the experiment was all reduced when the shield was used. This study has been confirmed that tungsten is a material that can replace lead due to its excellent performance and efficiency as shield, and that it even shows the possibility of manufacturing a customized shield using 3D printer.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Development of Bismuth Alloy-Based Anode Material for Lithium-Ion Battery (리튬이온 전지용 Bismuth 합금 기반 음극재 개발)

  • Chi Rong Sun;Jae Hoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2024
  • Bismuth is a promising anodic for Li-ion batteries (LIBs) due to its adequate operating voltage and high-volume capacity (3,765 mAh cm-3). Nevertheless, inevitable volume expansion during Bi alloy reactions leads to severe capacity loss and cell destruction. To address this, a complex of bismuth alloy nanoparticles (Bi@NC) embedded in an N doping-carbon coating is fabricated via a simple pyrolysis method. Nano-sized bismuth alloys can improve the reaction dynamics through a shortened Li+-ion diffusion path. In addition, the N-doped carbon coating effectively buffers the volume change of bismuth during the extended alloy/dealloy reaction with Li+ ions and maintains an effective conductive network. Based on the Thermogravimetric analysis (TGA) showed high bismuth alloy loading (80.9 wt%) and maintained a high gravimetric capacity of 315 mAh g-1 up to 100 cycles with high volumetric capacity of 845.6 mAh cm-3.

Effect of Silica Particle Size and Aging Time on the Improvement of Mechanical Properties of Geopolymer-Fiber Composites (실리카의 입자 크기와 Aging 시간이 지오폴리머 섬유 복합체의 기계적 물성 향상에 미치는 효과)

  • Yoonjoo Lee;Seokhun Jang;Minkyeong Oh;Dong-Gen Shin;Doo Hyun Choi;Jieun Lee;Chang-Bin Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.175-183
    • /
    • 2024
  • Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.

Morphological and Electrochemical Properties of ZnMn2O4 Nanopowders and Their Aggregated Microspheres Prepared by Simple Spray Drying Process

  • Gi Dae Park;Yun Chan Kang;Jung Sang Cho
    • Nanomaterials
    • /
    • v.12 no.4
    • /
    • pp.680-690
    • /
    • 2022
  • Phase-pure ZnMn2O4 nanopowders and their aggregated microsphere powders for use as anode material in lithium-ion batteries were obtained by a simple spray drying process using zinc and manganese salts as precursors, followed by citric acid post-annealing at different temperatures. X-ray diffraction (XRD) analysis indicated that phase-pure ZnMn2O4 powders were obtained even at a low post-annealing temperature of 400 ℃. The post-annealed powders were transformed into nanopowders by simple milling process, using agate mortar. The mean particle sizes of the ZnMn2O4 powders post-treated at 600 and 800 ℃ were found to be 43 and 85 nm, respectively, as determined by TEM observation. To provide practical utilization, the nanopowders were transformed into aggregated microspheres consisting of ZnMn2O4 nanoparticles by a second spray drying process. Based on the systematic analysis, the optimum post-annealing temperature required to obtain ZnMn2O4 nanopowders with high capacity and good cycle performance was found to be 800 ℃. Moreover, aggregated ZnMn2O4 microsphere showed improved cycle stability. The discharge capacities of the aggregated microsphere consisting of ZnMn2O4 nanoparticles post-treated at 800 ℃ were 1235, 821, and 687 mA h g-1 for the 1st, 2nd, and 100th cycles at a high current density of 2.0 A g-1, respectively. The capacity retention measured after the second cycle was 84%.