• Title/Summary/Keyword: nano-carbon

Search Result 1,341, Processing Time 0.025 seconds

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Fabrication of High-performance Carbon Counter Electrode for Dye-sensitized Solar Cells (염료감응 태양전지용 고성능 탄소 상대전극 제작)

  • Jang, Yeon-Ik;Lee, Seung-Yong;Kim, Dong-Hwan;Park, Jong-Ku
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.44-49
    • /
    • 2007
  • In the fabrication of dye-sensitized solar cells (DSSCs), carbon counter electrode has been tested for replacing the platinum counter electrode which has two drawbacks: limited surface area and high material cost. Poor mechanical stability of carbon layer due to weak bonding strength to electrically conductive TCO (transparent conducting oxide) glass substrate is a crucial barrier for practical application of carbon counter electrode. In the present study a carbon counter electrode with high conversion efficiency, comparable to Pt counter electrode, could be fabricated by adaption of a bonding layer between particulate carbon material and TCO substrate.

Microwave Absorption Study of Carbon Nano Materials Synthesized from Natural Oils

  • Kshirsagar, Dattatray E.;Puri, Vijaya;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.245-248
    • /
    • 2006
  • Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures $800^{\circ}C$, $850^{\circ}C$ and $900^{\circ}C$ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.

  • PDF

Synthesis and Properties of Dual Structured Carbon Nanotubes (DSCNTs)

  • Cho, Se-Ho;Kim, Do-Yoon;Heo, Jeong-Ku;Lee, Young-Hee;An, Kay-Hyeok;Kim, Shin-Dong;Lee, Young-Seak
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • In this study, in order to easily provide functional groups on the surface of carbon nanotubes, dual structural multiwalled carbon nanotubes which have crystalline graphite and turbostratic carbon wall were synthesized by modified vertical thermal decomposition method. Synthesized dual structural MWCNTs were characterized by FE-SEM, TGA, HR-TEM, Raman spectroscopy and BET specific surface area analyzer. The average innermost and outermost diameters of the synthesized nanotubes were around 45 and 75 nm, respectively. The large empty inner space and the presence of graphitic carbons on the surface may open potential applications for gas storage and collection of hazardous materials.

  • PDF

Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review

  • Palanivelu, K.;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.214-224
    • /
    • 2007
  • The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve $TiO_2$ visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to $TiO_2$ are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.

Desorption of Adsorbed Humic Acid on Carbon nano Tubes (카본나노튜브에 흡착된 휴믹산의 탈착에 관한 연구)

  • Jo, Mihyun;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.81-89
    • /
    • 2013
  • Concerns have been raised over the impact of nano materials on soil and groundwater environment with the increasing attention to the potential applications of carbon nano materials in various fields. Particularly, carbon nano materials introduced into water environment readily make complexes with humic acid (HA) due to their hydrophobic nature, so there have been increasing numbers of studies on the interaction between HA and carbon nano materials. In this study, we investigated the solubility of HA and multiwalled carbon nanotubes (MWCNT) in three different surfactant solutions of sodium dodecyl sulfate (SDS), Brij 30 and Triton X-100, and evaluated whether the HA can be effectively desorbed from the surface of MWCNT by surfactant. The objective of this study was to determine the optimal adsorption condition for HA to MWCNT. Futhermore, sodium dodecyl sulfate (SDS), Brij 30, Triton X-100 were used to elucidate the effect of desorption and separation on adsorbed HA on MWCNT. As a result, HA solution with 12.7 mg of total organic carbon (TOC) and 5 mg of MWCNT showed the highest adsorption capacity at pH 3 reacted for 72 hrs. Weight solubilizing ratio (WSR) of surfactants on HA and MWCNT was calculated. HA had approximately 2 times lower adsorption capacity for the applied three surfactants compared to those of MWCNT, implying that the desorption of HA may occur from the HA/MWCNT complex. According to the results of adsorption isotherm and weight solubilizing ratio (WSR), the most effective surfactants was the SDS 1% soluiton, showing 53.63% desorption of HA at pH 3.

Effects of Nano-sized Carbon Black on the Lungs of High Fat-diet Induced Overweight Rats

  • Lim, Cheol-Hong;Kang, Mingu;Han, Jeong-Hee;Yun, Hyo-In
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.14.1-14.9
    • /
    • 2013
  • Objectives This study was conducted to determine whether nano-sized carbon black exposure results in greater damage in high fat diet-induced overweight rats than normal weight ones and to identify the possible causes of any differences. Methods Two groups of Sprague-Dawley rats allocated by body weight (normal and overweight) were exposed to aerosolized nano-sized carbon black for 6 hours a day, 5 days per week over a 4-week period. Differential cell counts, lactate dehydrogenase (LDH) activities and albumin concentrations were measured in bronchoalveolar lavage (BAL) fluid, and histopathological findings in the lungs were evaluated. Tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin (IL)-6 were measured in BAL fluid and supernatants of lipopolysaccharide(LPS)-stimulated lymphocyte culture. Results Rats exposed to high concentrations of nano-sized carbon black showed significantly increased (p <0.05) polymorphonuclear leukocyte number and LDH activity in the BAL fluid from both overweight and normal rats. Mild histopathological changes were observed in normal rats irrespective of carbon black concentrations. However, severe histological scores were found in overweight rats ($1.75{\pm}0.46$, $2.25{\pm}0.46$, and $2.88{\pm}0.35$ after low, medium, and high concentration exposures). Proinflammatory cytokine levels of TNF-${\alpha}$ and IL-6 were significantly higher in the supernatant of LPS-stimulated lymphocytes of overweight rats, whereas there was no significant difference in the BAL fluid between normal and overweight rats. Conclusions Inflammation and damage to lungs exposed to nano-sized carbon black was more severe in high fat diet-induced overweight rats compared to normal rats.

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.