• Title/Summary/Keyword: nano-$ZrO_2$

Search Result 119, Processing Time 0.025 seconds

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

Synthesis and Photocatalytic Activity of TiO2-ZrO2 Nano-Sized Powders by Sol-Gel Process

  • Han, Jae-Kil;Saito Fumio;Park, Jong-Gu;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.7-10
    • /
    • 2005
  • [ $TiO_{2}-ZrO_{2}$ ] powders were successfully synthesized by the sol-gel process using titanium iso-propoxide as a precursor. The amorphous $TiO_{2}$ particles, 70 nm in size, homogenously adhered to the surface of $ZrO_{2}$ the powders. After calcination at $450^{circ}C$, most of the $TiO_{2}$ powders appeared as an anatase type, whereas they changed to a rutile phase at $750^{circ}C$. For comparison of photocata­lytic activity, $TiO_{2}-ZrO_{2}$ nano-sized powders calcined at $450^{circ}C,\;600^{circ}C,\;and\;750^{circ}C$ were used. In the $TiO_{2}-20wt\%$ $ZrO_{2}$ powders cal­cined at $450^{circ}C$, there was excellent removal efficiency of Methyl Orange (MO). For the calcination temperature increased, $TiO_{2}­ZrO_{2}$ nano-sized powders increased $ZrO_{2}$ contents showed the good photoactivity for the photooxidation of MO.

Microstructure and Mechanical Properties of Nano $ZrO_2$-dispersed Fe Sintered Bodies

  • Youn, Hyeong-Chul;Kim, Ki-Hyun;Choi, Chul-Jin;Lee, Byong-Teak
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.964-965
    • /
    • 2006
  • The injection molded Fe sintered bodies were fabricated using two kinds of nano Fe powders, $Fe-5%vol.ZrO_2$ and $Fe-10vol.%ZrO_2$ powders. The relationship between microstructure and mechanical properties depending on the $ZrO_2$ contents and sintering temperature were characterized by SEM and TEM techniques. In the wear test, the $Fe-0vol%ZrO_2$ sintered bodies showed mainly adhesive wear, but in the Fe-5%vol. $ZrO_2$ and Fe-10vol. % $ZrO_2$ composites the main wear behavior showed abrasive wear mode.

  • PDF

Microstructure Control of Fibrous Monolithic Al2O3-ZrO2 Composites (섬유단상 Al2O3-ZrO2 세라믹 복합재료의 미세조직제어)

  • Kim, Ki-Hyun;Kim, Taek-Soo;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.213-218
    • /
    • 2003
  • Fibrous monolithic control of$ Al_2$$O_3$ -$ZrO_2$composite was investigated by multi-pass extrusion process. To obtain sound $Al_2$$O_3$-X $O_2$sintered bodies, burning out and sintering process were carefully carried out. The sintered bodies showed continuous, fibrous monolithic microstructure without any swelling. Many microcracks were observed at the $Al_2$$O_3$-$ZrO_2$interfaces due to the mismatching of thermal expansion coefficient between $Al_2$$O_3$ and $ZrO_2$phase. Most of m- $ZrO_2$grains included twin defects such as (001), (010) and (011) type to accommodate the phase transformation induced stress.

Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process (고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구)

  • Lee, Ju Seong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Phase stability and Morphology of high-k gate stack of $Si/SiO_2/HfO_2$ and $Si/SiO_2/ZrO_2$

  • Lee, Seung-Hwan;Bobade, Santosh M.;Yoo, W.J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.118-119
    • /
    • 2007
  • Phase stability and morphological investigation on the $Si/SiO_2/HfO_2$ and $Si/SiO_2/ZrO_2$ stack are presented. Thermal stability of $HfO_2$ and $ZrO_2$ determines the quality of interface and subsequently the performance of device. The stacks have been fabricated and annealed at $1000^{\circ}C$ for various time. In evolution of crystalline phase and morphology (electrical and geometrical) of high-k materials, annealing time and process are observed to be crucial factors. The crystallization of some phase has been observed in the case of $Si/SiO_2/HfO_2$. The chemical environment around Zr and Hf in respective samples is observed to be different.

  • PDF