• Title/Summary/Keyword: nailing

Search Result 227, Processing Time 0.024 seconds

Reinforced Effects of Soil-nailed Structures by a Vertical Coupling of a Exposed Nail at a Front (지반네일보강토체 전면부에서 노출된 지반네일의 연직 방향 연결에 의한 보강효과)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • The soil nailing method have been developed on the basis of experimental works as well as theoretical backgrounds. As for the experimental research works, most of the data have been measured during the application of load in service. However, not only the soil-nailed structure behavior in service but also the failure behavior of the structure are the major concerns to evaluate and even establish a design method of soil-nailed walls. In this paper for the apprehension of behavior in the soil-nailed structure which the front of nail is connected, a relatively large-scale experiment was carried out to figure out the failure behavior of soil-nailed wall. A number of data have been acquired and analysis.

  • PDF

Design, Construction and Performance of A Removable Soil Nailing System (제거식 쏘일 네일링 공법의 설계 및 시공)

  • Kim, Hong-Taek;Ryu, Jeong-Soo;Jung, Sung-Pill;Kang, In-Kyu;Park, Si-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • 쏘일네일 벽체는 국낸에서 과거 10년간 가시설 및 영구구조물에 상당수 시공되어 왔다. 그러나 쏘일네일링 공법은 많은 장점이 있음에도 불구하고 인접한 건물의 하부에 쏘일네일이 삽입되는 것을 허용하지 않아 제한적으로 사용되고 있는 실정이다. 따라서 본 논문에서는 쏘일네일이 인접한 건물의 하부에 삽입되는 문제를 해결하고 철근을 재활용할 수 있는 방안으로 제거식 쏘일네일링 공법을 소개하였다. 제서식 쏘일네일링 공법은 연직굴착시 가시설 흙막이벽체로 주로 사용할 수 있다. 제거식 쏘일네일의 인발특성을 규명하기 위해 총 23회의 현장인발실험을 실시하였으며, 이를 통해 고정자 소켓의 설치간격과 시멘트 그라우트의 W/C 비가 중요한 설계인자라는 것을 알 수 있었다. 또한 본 논문에서는 국내에서 처음으로 시공되는 제거식 쏘일네일 벽체의 설계 및 시공과 시공상태 등을 소개하였으며, 제거식 쏘일네일의 철근을 제거하기 전과 후에 벽체의 변형을 계측자료로부터 분석하였다.

  • PDF

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

Antegrade Intramedullary Nailing in Traumatic Humeral Shaft Fractures (외상에 의한 상완골 간부골절의 전향적 골수강내 금속정 고정술)

  • Kim, Eugene;Ahn, Hyung Sun;Choi, Young Joon;Kim, Chung Hwan;Hwang, Jae Kwang;Lee, Jong Ha
    • Journal of Trauma and Injury
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Background: We evaluated the clinical and the radiological results of treatment for humeral shaft fractures by using an antegrade intramedullary nail. Methods: Thirty-nine (39) cases of humeral shaft fractures treated with antegrade intramedullary nail were evaluated. Bone union was evaluated with simple radiographic findings, and a functional evaluation was done using the American Shoulder and Elbow Surgeons (ASES) score. Results: The average duration until union was 14.1 weeks. On the functional evaluation using the ASES score, 15 cases were excellent, 19 cases good, 3 cases fair, and 2 cases poor. Conclusion: We conclude that antegrade intramedullary nailing has a good clinical and radiological result for treatment of humeral shaft fractures.

An Experimental Study of Soil-nailed Structures in Sands (모래를 사용한 지반네일 구조물의 실험적 연구)

  • Kim, Jun-Seok;Lee, Sang-Deok;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.91-100
    • /
    • 1997
  • The soil nailing method has been developed on the basis of experimental works as well as theoretical backgrounds. As for the experimental research works, most of the data have been measured during the application of load in service. However, not only the soil-nailed structure behavior in service but also the failure behavior of the structure is major concern to evaluate and even establish a design method of soil-nailed walls. In this study, a relatively large-scale experiment was carried out to figure out the failure behavior of soil-nailed wall. A number of data such as displacement of soil-nailed walls, soil pressure in soil-nailed walls, atrial strain and axial force of nail etc.'have been acquired and analysis.

  • PDF

Stability Analysis and Design of Reinforced Masonry Walls (보강석축의 안정해석 및 설계)

  • Kim, Hong Taek;Kang, In Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.239-253
    • /
    • 1992
  • The masonry walls, having the characters of cheap construction materials and relatively easy construction, have been widely used in supporting slopes. However, the necessity of reinforcing methods to improve the stability of masonry walls has been continuously required due to the collapses taken place quite often. In the present study, a new method to improve the stability of masonry walls was developed based on the soil nailing system proven effective in strengthening the surrounding soils. The developed method could be used in reinforcing the old masonry walls structually unsafe as well as in constructing new masonry walls. The effects of pore water pressures due to heavy rainfalls were included in the developed method and also the chart practically applicable to design was presented, together with a design example.

  • PDF

A Study on the Design Application of Soil Nailed Wall Analysis Programs Using Field Data (실측 데이터를 이용한 Soil nailed wall 해석 프로그램의 설계 적용성에 관한 연구)

  • Kim, Won-Cheul;Chun, Byung-Sik;Park, Shin-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • The several computer programs for the design of soil nailed wall are often used in Korea. However, these programs have been used without any practical justification. Therefore, in order to evaluate the applicability of these programs for the design of soil nailing, these computer results were analyzed and compared with one another. The performance evaluations by the available programs, such as SNAILZ, TALREN97, SLOPE/W, STABL6, and NAILM16, were applied and the applied data were from 5 case history(15 section). The estimated factors of safety with available programs were compared with observed horizontal deformation from the field. The results showed that the program SNAILZ is most adequate tool for the design of soil nailed wall.

  • PDF

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

A study of mechanism and numerical analysis of PNT method (PNT공법에 대한 원리 및 수치해석적인 연구)

  • Chae, Sung-Eun;Seo, Dong-Hyun;Im, Gi-Woon;Chun, Sung-Yul;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2010
  • In this paper, a new soft ground tunneling technique termed the PNT method(Pre-Nailed Tunneling Method) is studied. Mechanism of the method is investigated in terms of theoretical and numerical approaches. The pre-nailing effects are validated by performing two dimensional numerical analyses. It is identified that the method is successful in soft grounds, and greatly efficient in reducing the ground deformation by nailing the ground. To develop the design guidelines of the method, numerical parametric analyses on the installation range and angle were also carried out.