• Title/Summary/Keyword: n3 fatty acids

Search Result 862, Processing Time 0.018 seconds

Preparation of Instant Powdered Soup using Canned Oyster Processing Waste Water and Its Characteristics (굴통조림 부산액을 이용한 인스턴트 분말수프의 제조 및 특성)

  • KIM Jin-Soo;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2001
  • To utilize canned oyster processing waste water effectively, this study was carried out to prepare instant powdered soup using the waste water (IPSW), Instant powdered souu from oyster hot-water extracts (IPSE) was prepared by mixing hot-water extracts powder (15 g) with table salt (5 g), cream powder (19 g), milk replacer (12 g), wheat flour (20 g), corn flour (15 g), starch (5 g), glucose (7.5 g) and onion powder (1.5 g). In preparing IPSW, mixed powder from wash water and boiling liquid waste, instead of powder from hot-water extracts and table salt, was added (powder from boiling liquid waste: powder from wash water= 12: 8) and other additives were added in proportion to those in the IPSE, The IPSW consists mainly of carbohydrates (about $72\%$). It was not different from the IPSE. The volatile basic nitrogen, viable cell counts, coliform group of the IPSW contains 33.4 mg/100g, $2.2\times10^4CFU/g$, <180 MPN/100g, respectively, and its water activity has 0.257. So it was a hygienically safe and conservable instant food. The main fatty acids of IPSW were 16: 0 and 18: 1n-9. Its chemical score of protein was $61.4\%$ and its main inorganic matter was iron. According to a sensual evaluation, in contrast to the IPSE, the IPSW had a bit lower aroma but better taste, It was concluded from the above chemical and sensory evaluation that even the boiling liquid waste which had been mostly abandoned because of its high table salt content can be used as a good material for instant powdered soup if it's powdered and mixed adequately with powder from wash water, and its table salt content is properly adjusted.

  • PDF

Effects of Different Types of Dietary Fat on Muscle Atrophy According to Muscle Fiber Types and PPAR${\delta}$ Expression in Hindlimb-Immobilized Rats (지방의 종류가 다른 식이의 섭취가 하지고정 흰 쥐의 근 섬유별 근 위축과 PPAR${\delta}$ 활성에 미치는 영향)

  • Lee, Ho-Uk;Park, Mi-Na;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.355-365
    • /
    • 2011
  • This study investigated how dietary fat affects muscle atrophy and lipid metabolism in various muscles during hindlimb immobilization in rats. Twenty-four male Sprague?Dawley rats had their left hindlimb immobilized and were divided into four groups by dietary fat content and composition. The contralateral hindlimb (control) was compared with the immobilized limb in all dietary groups. Rats (n = 6/group) were fed a 4% corn oil diet (CO), 2.6% corn oil + 1.4% fish oil diet (FO), 30% corn oil diet (HCO), or a 30% beef tallow diet (HBT)after their hind limbs were immobilized for 10 days. Data were collected for the gastrocnemius, plantaris and soleus muscles. Muscle atrophy was induced significantly after 10 days of hindlimb immobilization, resulting in significantly decreased muscle mass and total muscle protein content. The protein levels of peroxisome proliferator activated receptor ${\delta}$ (PPAR${\delta}$) in the plantaris, gastrocnemius, and soleus increased following hindlimb immobilization irrespective of dietary fat intake. Interestingly, the PPAR${\delta}$ mRNA level in the plantaris decreased significantly in all groups and that in the FO group was lower than that in the other groups. The soleus PPAR${\delta}$ mRNA level decreased significantly following hindlimb immobilization in the FO group only. Muscle carnitine palmitoyl transferase 1 (mCPT1) mRNA level was not affected by hindlimb immobilization. However, the mCPT1 mRNA level in the FO group was significantly lower in the plantaris but higher in the soleus than that in the other groups. The pyruvate dehydrogenase kinase 4 (PDK4) mRNA level in the plantaris decreased significantly, whereas that in the soleus increased significantly following hindlimb immobilization. The plantaris, but not soleus, PDK4 mRNA level was significantly higher in the FO group than that in the CO group. The increased PPAR${\delta}$ protein level following hindlimb immobilization may have suppressed triglyceride accumulation in muscles and different types of dietary fat may have differentially affected muscle atrophy according to muscle type. Our results suggest that ${\omega}$-3 polyunsaturated fatty acids may suppress muscle atrophy and lipid accumulation by positively affecting the expression level and activity of PPAR${\delta}$ and PPAR${\delta}$-related enzymes, which are supposed to play an important role in muscle lipid metabolism.