• Title/Summary/Keyword: n-trees

Search Result 402, Processing Time 0.019 seconds

Situation of Fertilizer Industry in Korea (비료산업(肥料産業)의 현황(現況)과 문제점(問題点))

  • Lee, Yun Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • 1. Production and consumption of chemical fertilizers in Korea could be divided into five different phases of total imports, setting up fertilizer plants, self-sufficiency in production, net export, and diversification in compound fertilizers. Currently the nation has production capacity of 800 thousand M/T of nitrogen, 400 thousand M/T of phosphate ($P_2O_5$) and 200 thousand M/T of potash ($K_2O$). 2. Yearly consumption increased every year, since 1964, 28,000 M/T N, 7,700 M/T $P_2O_5$, and 7,500 M/T $K_2O$ until 1972, when the increase jumped by eight times for $P_2O_5$ and seven times for $K_2O$ for the following 3 years in anticipation of their short supply. Now total consumption has been more or less stabilized at the level of 450 thousand M/T N, 220 thousand M/T $P_2O_5$ and 180 thousand M/T $K_2O$ for the last 7 years. 3. Current operation rate of fertilizer plants is around 80% throughout the whole industry, after going through several different levels depending on demand at times. 4. Fertilizer export started in 1967 and reached a peak of 150 thousand nutrient ton in 1972, about 20% of total production, before temporarily stopping due to over-demand for next three years. The export resumed again in 1976 rise to the all time high of 670 thousand nutrient ton in 1980, almost half of total production, and then started to decline due to higher price of petroleum since then. 5. The decline in fertilizer export appears to be accelerated because several countries, in South-Eastern Asia, traditional export market for Korean fertilizers, started to build their own plants, since 1980, based on their raw materials of especially petroleum. 6. Current consumption in Korea is about 30 nutrient Kg per 10a, equivalent to that in Western European countries, partly due to new high-yielding rice varieties and extensive cultivation of fruit trees and vegetables. Additional fertilizer demand in future can be anticipated in reclaimed land for growing grass and forestry.

  • PDF

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.