• 제목/요약/키워드: n-doped

검색결과 1,043건 처리시간 0.028초

원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석 (Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide)

  • 조영득;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

Field Oxide를 이용한 고전압 SiC 쇼트키 diode 제작 (Fabrication of SiC Schottky Diode with Field oxide structure)

  • 송근호;방욱;김상철;서길수;김남균;김은동;박훈수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2002
  • High voltage SiC Schottky barrier diodes with field plate structure have been fabricated and characterized. N-type 4H-SiC wafer with an epilayer of ∼10$\^$15/㎤ doping level was used as a starting material. Various Schottky metals such as Ni, Pt, Ta, Ti were sputtered and thermally-evaporated on the low-doped epilayer. Ohmic contact was formed at the backside of the SiC wafer by annealing at 950$^{\circ}C$ for 90 sec in argon using rapid thermal annealer. Field oxide of 550${\AA}$ in thickness was formed by a wet oxidation process at l150$^{\circ}C$ for 3h and subsequently heat-treated at l150$^{\circ}C$ for 30 min in argon for improving oxide quality. The turn-on voltages of the Ni/4H-SiC Schottky diode was 1.6V which was much higher than those of Pt(1.0V), Ta(0.7V) and Ti(0.7). The voltage drop was measured at the current density of 100A/$\textrm{cm}^2$ showing 2.1V for Ni Schottky diode, 1.45V for Pt 1.35V, for Ta, and 1.25V for Ti, respectively. The maximum reverse breakdown voltage was measured 1100V in the file plated Schottky diodes with 101an thick epilayer.

  • PDF

에너지수확소자용 친환경 (Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Environmantal Friendly(Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 Ceramics for Energy Harvesting Devices)

  • 신상훈;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제26권5호
    • /
    • pp.355-359
    • /
    • 2013
  • In this paper, the $0.995(Li_{0.04}(Na_{0.56}K_{0.44})_{0.96}(Nb_{0.90}Ta_{0.10})_{0.998}Zn_{0.005}O_3+0.005KNbO_3+xwt%\;TeO_2$ lead-free piezoelectric ceramics for energy harvesting devices were fabricated by the conventional mixed oxide method. The microstructure, dielectric, and piezoelectric properties were investigated as a function of the $TeO_2$ addition. All the specimens showed an orthorhombic phase structure. At the composition ceramics doped with 0.1 wt%$TeO_2$, the optimum values of $d_{33}$= 212 pC/N, $d_{33}{\cdot}g_{33}=9.54pm^2/N$, and kp=0.448 were obtained, respectively. The results indicate that the composition ceramics is a promising candidate for energy harvesting devices applications.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Azomethine계 화합물의 분광학적 특성과 전기적 특성에 관한 연구 (The study on the spectroscopic and electrical properties of Azomethine compounds)

  • 백대진;오원춘;고영신
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.249-258
    • /
    • 1995
  • Polyazine, polyazomethine ( I ) 및 ( II )는 각각 p-benzoquinone과 hydrazine hydrate, p-phenylenediamine, 그리고 diaminomaleonitrile을 dimethylsulfoxide(DMSO)하에서 중합하여 얻었다. Polyazine, polyazomethine ( I ) 및 ( II )의 IR spectra 분석결과 $1600cm^{-1}$ 부근에서 Schiff base의 특성 peak인 -C=N-를 확인하였다. 또한 각 polyazine, polyazomethine ( I ) 및 ( II )를 conc. $H_2SO_4$에 용해시켜 UV/VIS spectrum 측정결과 protonate (>$C\limits^{\small\oplus}=NH-$)에 해당되는 것으로 생각되는 흡수 band가 300nm 부근에서 나타났으며 350~415nm 부근에서 전하이동전이와 같은 흡수로 생각되는 흡수 band가 나타났다. Polyazine, Polyazomethine ( I ) 및 ( II )의 자체 전기전도도는 약 $10^{-14}{\sim}10^{-11}{\Omega}^{-1}cm^{-1}$로 나타났으며 $I_2$를 도핑한 후 최고 전기전도도가 $10^{-2}{\Omega}^{-1}cm^{-1}$ 정도로 약 $10^{12}{\sim}10^9$배 향상되었다.

  • PDF

산화성 가스에 대한 SnO2모물질 가스센서의 감지특성 (Responses of SnO2-based Sensors for Oxidizing Gases)

  • 정해원;박희숙;김종명;윤기현
    • 한국세라믹학회지
    • /
    • 제40권10호
    • /
    • pp.973-980
    • /
    • 2003
  • n-type 반도체인 SnO$_2$ 가스센서에서 첨가제가 산화성 가스에 대한 감지특성에 미치는 영향을 살펴보았다 SnO$_2$ 센서는 환원성 가스에 노출될 경우 전자 주게로 작용하여 저항이 감소하지만, 반대로 산화성 가스에 노출될 경우 전자 받게로 작용하여 저항이 증가하는 특성을 보인다 산화성 가스와 SnO$_2$ 분말 사이의 반응생성물을 가스 크로마토그래피 분석을 통하여 환원성 가스인 알콜의 반응 생성물과 비교하였다. PdC1$_2$혹은 A1$_2$O$_3$가 첨가된 센서는 산화성의 $CH_3$CN와 $CH_3$NO$_2$에 대해 동작온도에 따라 독특한 이중반응특성을 보였다. 이들 센서들의 조합과 패턴인식 기법을 이용하면 전자수용기를 가진 가스들에 대한 선택성을 높일 수 있을 것이다.

Green Phosphorescent OLED Without a Hole/Exciton Blocking Layer Using Intermixed Double Host and Selective Doping

  • Kim, Won-Ki;Kim, Hyung-Seok;Shin, Hyun-Kwan;Jang, Ji-Geun
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.240-244
    • /
    • 2009
  • Simple and high efficiency green phosphorescent devices using an intermixed double host of 4, 4', 4"-tris(N-carbazolyl) triphenylamine [TCTA], 1, 3, 5-tris (N-phenylbenzimiazole-2-yl) benzene [TPBI], phosphorescent dye of tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and selective doping in the TPBI region were fabricated, and their electro luminescent characteristics were evaluated. In the device fabrication, layers of $70{\AA}$-TCTA/$90{\AA}$-$TCTA_[0.5}TPBI_{0.5}$/$90{\AA}$-TPBI doped with $Ir(ppy)_3$ of 8% and an undoped layer of $50{\AA}$-TPBI were successively deposited to form an emission region, and SFC137 [proprietary electron transporting material] with three different thicknesses of $300{\AA}$, $500{\AA}$, and $700{\AA}$ were used as an electron transport layer. The device with $500{\AA}$-SFC137 showed the luminance of $48,300\;cd/m^2$ at an applied voltage of 10 V, and a maximum current efficiency of 57 cd/A under a luminance of $230\;cd/m^2$. The peak wavelength in the electroluminescent spectral and color coordinates on the Commission Internationale de I'Eclairage [CIE] chart were 512 nm and (0.31, 0.62), respectively.

In 이온을 첨가한 $EuFeO_{3}$의 결정구조 및 자기적 성질 (The Crystallograpic and Magnetic Properties of EuFeO3 Doped with in ions)

  • 김정기;서정철;한은주
    • 한국자기학회지
    • /
    • 제4권4호
    • /
    • pp.335-339
    • /
    • 1994
  • $Eu(Fe_{1-x}In_{x})O_{3}$ (x=0, 0.03과 0.05)의 결정구조와 자기적 성질을 상온에서의 X선 회절, $M\"{o}ssbauer$ 분광학 및 자기이력곡선 측정 방법에 의해서 연구하였다. X선 회절 분석 결과는 모든 시료가 orthorhombic 결정구조를 가지며, 단위포의 체적은 x=0을 제외하면 In 농도의 증가에 따라 증가함을 보인다. $M\"{o}ssbauer$ 스펙트럼은 두셋트 여섯 lines을 갖는다는 가정하에 분석하였다. 분석 결과는 각 셋트에서의 초미세 자기장은 x의 증가에 따라 감소하였다. 본 연구의 시료에서 공명 흡수선의 반폭이 x의 증 가에 따라 증가함은, 측정 data가 $Fe^{3+}$ 이온 주위 z개의 $In^{3+}$ 이온이 존재할 확률 분포, $_{n}P_{z}(x)$에 비례하는 초미세 구조에 의한 흡수선의 합으로 이루어졌음을 의미한다. 자기이력 곡선에서 $M_{s}$$H_{c}$는 각각 X의 증가에 따라 감소와 증가를 보인다.

  • PDF

BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향 (The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor)

  • 전명표
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.