• Title/Summary/Keyword: n-ZnO

Search Result 916, Processing Time 0.039 seconds

Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting (물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성)

  • Park, Junghwan;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

n-ZnO/p-GaN 이종접합 LED의 전기.광학적 특성

  • Kim, Jun;Song, Chang-Ho;Sin, Dong-Hwi;Jo, Yeong-Beom;Bae, Nam-Ho;Byeon, Chang-Seop;Kim, Seon-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.41.1-41.1
    • /
    • 2011
  • 본 연구에서는 MOCVD법으로 사파이어 기판위에 u-GaN를 성장한 후 Mg을 도핑시켜 p-GaN를 성장하고, RF 스퍼터를 이용하여 n-ZnO를 도포하여 n-ZnO/p-GaN 이종접합을 형성한 후 진공증착기를 이용하여 Au/Ni를 증착시켜 발광다이오드(LED)를 제작하고 전기 광학적 특성을 조사하였다. 두께가 500 nm인 u-GaN 위에 성장된 p-GaN의 운반자 농도는 $1.68{\times}10^{17}\;cm^{-3}$ 이었다. 그리고 150, 300 nm 두께의 p-GaN에 대하여 측정된 DXRD 반치폭은 각각 450 arcsec, 396 arcsec 이었고, 상온에서 2.8~3.0 eV 영역에서 Mg 억셉터와 관련된 광루미네센스가 검출되었다. RF 스퍼터링에 의해 0.7 nm/min의 속도로 증착된 n-ZnO 박막은 증착 두께에 따라 비저항이 27.7 $m{\Omega}{\cdot}cm$ 에서 6.85 $m{\Omega}{\cdot}cm$ 까지 감소하였다. 그리고 n-ZnO 박막은 (0002)면으로 우선 배향되었으며, 상온에서 에너지갭 관련된 광루미네센스가 3.25 eV 부근에서 주되게 검출되었다. n-ZnO/p-GaN 이종접합 LED의 전류전압 특성곡선은 다이오드 방정식에 만족하는 특성을 나타내었다. 다이오드 지수는 3 V 이하 영역에서 1.64, 3~5 V 영역에서 0.85이었다. 그리고 5 V 이상 영역에서 공간전하의 제한을 받았으며, 다이오드 지수는 3.36이었다. 한편, 역방향 전류전압 특성은 p-GaN 박막의 두께에 영향을 받았으며, p-GaN 박막의 두께가 150, 300 nm 일 때 각각의 누설 전류는 $1.3{\times}10^{-3}$ mA와 $8.6{\times}10^{-5}$ mA 이었다. 상온에서 측정된 EL 스펙트럼의 주된 발광피크는 430 nm이었고, 반치폭은 49.5 nm이었다.

  • PDF

Electrical characterization of n-ZnO/p-Si heterojunction diode grown by MOCVD (MOCVD를 이용해 성장한 n-ZnO/p-Si 이종접합 다이오드의 전기적 특성 평가)

  • Han, Won-Seok;Gong, Bo-Hyeon;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.143-144
    • /
    • 2007
  • 저온 성장이 가능한 MOCVD를 이용하여 단결정 p-Si 기판위에 n-ZnO를 산소분압을 달리하여 성장하였다. 산소유량에 따른 이종접합 다이오드의 전기적 특성을 평가하기위하여 n-ZnO의 전기전도도, 이동도, 캐리어 농도를 측정하였으며, 소자에 저항성 접촉(ohmic contact) 전극을 형성하여 전류-전압 특성을 파악하였다.

  • PDF

Electrochemical Immunosensor Based on the ZnO Nanorods Inside PDMS Channel for H7N9 Influenza Virus Detection (PDMS 채널 내부에 성장된 산화아연 나노막대를 이용한 H7N9 인플루엔자 바이러스 전기화학 면역센서)

  • Han, Ji-Hoon;Lee, Dongyoung;Pak, James Jungho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.278-283
    • /
    • 2014
  • In this study, we propose an immunosensor using zinc oxide nanorods (NRs) inside PDMS channel for detecting the influenza A virus subtype H7N9. ZnO with high isoelectric point (IEP, ~9.5) makes it suitable for immobilizing proteins with low IEP. In this proposed H7N9 immunosensor structure ZnO NRs were grown on the PDMS channel inner surface to immobilize H7N9 capture antibody. A sandwich enzyme-linked immunosorbent assay (ELISA) method with was used 3,3',5,5' tetramethylbenzidine (TMB) for detecting H7N9 influenza virus. The immunosensor was evaluated by amperometry at various H7N9 influenza antigen concentrations (1 pg/ml - 1 ng/ml). The redox peak voltage and current were measured by amperometry with ZnO NWs and without ZnO NWs inside PDMS channel. The measurement results of the H7N9 immunosensor showed that oxidation peak current of TMB at 0.25 V logarithmically increased from 2.3 to 3.8 uA as the H7N9 influenza antigen concentration changed from 1 pg/ml to 1 ng/ml. And then we demonstrated that ZnO NRs inside PDMS channel can improve the sensitivity of immunosensor to compare non-ZnO NRs inside PDMS channel.

Deep-Level Defects on Nitrogen-Doped ZnO by Photoinduced Current Transient Spectroscopy

  • Choi, Hyun Yul;Seo, Dong Hyeok;Kwak, Dong Wook;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Lee, Jae Sun;Lee, Sung Ho;Yoon, Deuk Gong;Bae, Jin Sun;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.421-422
    • /
    • 2013
  • Recently, ZnO has received attentionbecause of its applications in optoelectronics and spintronics. In order to investigate deep level defects in ZnO, we used N-doped ZnO with various of the N-doping concentration. which are reference samples (undoped ZnO), 27%, 49%, and 88%-doped ZnO. Photoinduced current transient spectroscopy (PICTS) measurement was carried out to find deep level traps in high resistive ZnO:N. In reference ZnO sample, a deep trap was found to located at 0.31 (as denoted as the CO trap) eV below conduction band edge. And the CN1 and CN2 traps were located at 0.09, at 0.17 eV below conduction band edge, respectively. In the case of both annealed samples at 200 and $300^{\circ}C$, the defect density of the CO trap increases and then decreases with an increase of N-doping concentration. On the other hands, the density of CN traps has little change according to an increase of N-doping concentration in the annealed sample at $300^{\circ}C$. According to the result of PICTS measurement for different N-doping concentration, we suggest that the CO trap could be controled by N-doping and the CN traps be stabilized by thermal annealing at $300^{\circ}C$.

  • PDF

Morphological Transitions of MOCVD-Grown ZnO Thin Films (MOCVD로 성장된 ZnO 박막의 미세구조 변화)

  • 박재영;이동주;이병택;김상섭
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.59-59
    • /
    • 2003
  • ZnO는 상온에서 3.37 eV의 넓은 밴드갭을 가지는 직접천이형 반도체이다. 상온에서 60 meV의 큰 엑시톤 결합에너지를 가짐으로 인해 엑시톤 재결합에 의한 강한 UV 레이저 발진효과를 기대할 수 있다. 이러한 장점을 갖는 ZnO 박막을 이용하여 광소자 등에 응용하기 위하여 양질의 ZnO 박막성장이 필수적이며, 이를 위해 MBE, MOCVD, PLD, rf magnetron sputtering 등 다양한 증착방법을 통한 연구결과가 보고되고 있다. 또한 p형 불순물인 As과 N 도핑 및 Ga과 N의 co-doping 방법 등을 통하여 p형 ZnO 박막을 제조하였음이 보고되고 있으나 재현성 문제 등으로 인해 계속적인 연구가 진행되고 있다. 본 연구에서는 MOCVD를 이용하여 A1$_2$O$_3$(0001) 기판 위에 ZnO 박막을 성장시켰다. Zn 전구체로 DEZn을 사용하였으며, 산소 source로 $O_2$를 사용하였다. 증착온도, Ⅵ/II 비율, 반응기 압력 등 MOCVD의 중요한 공정변수들의 체계적인 변화에 따른 박막성장 양상을 조사하였다. 증착 조건에 따라 ZnO 입자의 모양이 주상(column), nano-rod, nano-needle, nano-wire 등으로 급격하게 변화됨을 확인하였으며, 이러한 입자의 모양과 결정성장 방향 및 광학적 특성과의 상관관계의 해석을 시도하였다.

  • PDF

Characteristics of SAW humidity sensor using nanocrystalline ZnO films

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.337-341
    • /
    • 2010
  • In this work, the nanocrystalline ZnO/polycrystalline(poly) aluminum nitride(AlN)/ Si-layered structure was fabricated for humidity sensor applications based on surface acoustic wave(SAW). The ZnO film was used as a sensitive material layer. The ZnO and AlN(0002) were deposited by a sol-gel process and a pulse reactive magnetron sputtering, respectively. The ZnO sensitive films coated on AlN have a hexagonal wurtzite structure after the thin films annealed at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. The surface of the film exhibits sponginess and a nanometer particle size(below 50 nm). The largest shift in the frequency response was at approximately 200 kHz(the relative humidity: 10 %~90 %) for the structure annealed at $400^{\circ}C$. The effect of the change in the environmental temperature on the frequency response of the SAW humidity sensor was also investigated.

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

DEGRADATION OF Zn$_3$$N_2$ FILMS PREPARED BY REACTIVE RF MAGNETRON SPUTTERING

  • Futsuhara, Masanobu;Yoshioka, Katsuaki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.563-569
    • /
    • 1996
  • Degradation of $Zn_3N_2$ films is studied by using several analytical techniques. Polycrystalline $Zn_3N_2$ films prepared by reactie rf magnetron sputtering are kept in the air. Electrical and optical properties are measured by using van der Pauw technique and double-beam spectrometry. Structure and chemical bonding states are studied by X-ray diffraction(XRD), Fourier transfer infrared ray spectroscopy(FT-IR) and X-ray photoelectron specroscopy (XPS). Significant differences are observed in optical properties between the degraded film and the ZnO film. XRD analysis reveals that the degraded film contains very small ZnO grains because very weak and broad ZnO peaks are observed. XPS and FT-IR measurements reveal the formation of $Zn(OH)_2$ in the degraded film. The existence of N-H bonds in degraded films is exhibited from the N 1s spectra. $Zn_3N_2$ change into the mixture of ZnO, $Zn(OH)_2$ and an ammonium salt.

  • PDF