• Title/Summary/Keyword: n-Propanol+acetic acid system

Search Result 4, Processing Time 0.019 seconds

Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System (노말프로판올과 아세틱에씨드 계의 최소자연발화온도(AIT) 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2017
  • The autoignition temperature (AIT) is crucial combustible characteristics which need attention in chemical process that handle hazardous materials. The AIT, also to as minimum spontaneous ignition temperature(MSIT), is the lowest temperature of a hot surface at which the substance will spontaneously ignite without any obvious sources of ignition such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for process safety. This study measured the AITs of n-propanol+acetic acid system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-propanol and acetic acid which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-propanol+acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). In the case of n-propanol and acetic acid system, the minimum autoignition temperature behavior (MAITB), which is lower than the lower AIT, is shown among the two pure substances constituting the mixture.

The Measurement and Estimation of Lower Flash Points for n-Propanol+Acetic acid and n-Propanol+n-Propionic Systems (n-Propanol+acetic acid 및 n-propanol+n-propionic acid 계의 하부 인하점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • Flash points for the flammable binary systems, n-propanol+acetic acid and n-propanol+n-propionic acid, were measured by Cleveland open cup tester. The Raoult's law, the van Laar equation and the UNIQUAC equation were used for predicting flash points and were compared with experimentally-derived data. The calculated values based on the van Laar and UNIQUAC equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model based on the UNIQUAC equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the the van Laar equation.

The Measurement and Estimation of Lower Flash Point for 2-Propanol+Acid Systems Using Cleveland Open Cup Apparatus (클리브랜드 개방식 장치를 이용한 2-propanol+acid류 계의 하부 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the 2-propanol+acetic acid and 2-propanol+-n-propionic acid systems were measured by Cleveland open cup apparatus. The experimental data were compared with the values calculated by the Raoult's law, the Wilson equation and the NRTL(non random two liquids) equation. The calculated values based on the Wilson and NRTL equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model, based on NRTL equation described the experimentally-derived data were more effective than the case of the Wilson equation.

Volatile Compounds of Potato Sojues Produced by Different Distillation Condition (증류조건을 달리한 감자소주의 휘발성 성분)

  • Jeong, Yong-Jin;Seo, Ji-Hyung
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.433-437
    • /
    • 2012
  • The fusel oils and the volatile flavor compounds of two potato sojues, one of which was produced with the traditional distillation apparatus(soju-gori) and the other, with the reduced pressure distillation system, were examined. The fusel oil content was high in the potato soju that was distilled under reduced pressure (potato soju(II)). The relative ratio of the isoamyl alcohol to the isobutyl alcohol and the n-propanol was 3.1:0.8:1.0 in the potato soju that was distilled with soju-gori (potato soju(I)), and 4.0:1.2:1.0 in potato soju(II). The chromatograms of the volatile components apparently differed between potato soju(I) and potato soju(II). Potato soju(I) contained four kinds of alcohol, six kinds of ester, n-valeraldehyde, and acetic acid. Potato soju(II) contained seven kinds of alcohol, 14 kinds of ester, two kinds of aldehyde, acetic acid, and three other compounds. Potato soju(II) significantly scored higher for flavor property than potato soju(I).