• Title/Summary/Keyword: n-3 polyunsaturated fatty acid deficiency

Search Result 4, Processing Time 0.023 seconds

Effect of n-3 Fatty Acid Deficiency on Fatty Acid Composition in Brain, Retina and Liver Using a Novel Artificial Rearing System (인공 사육 동물 모델 시스템을 이용한 n-3 지방산 결핍이 쥐의 뇌, 망막, 간의 지방산 조성에 미치는 영향)

  • Lim, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.466-475
    • /
    • 2005
  • Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in membrane of brain and retina, and plays an important role in maintaining an optimal function of the central nervous system. We investigated the effect of n-3 fatty acid deficiency on rat brain, retina and liver fatty acyl composition at two different ages (3 wks and 15 wks) under DHA deficient condition. Rat pups born to dams fed a diet with $3.1\%$ of total fatty acids as $\alpha-linolenic$ acid (LNA) were fed using an artificial rearing system either an n-3 deficient (n-3 Def) or n-3 adequate (n-3 Adq) diet. Both diets contained $17.1\%$ linoleic acid (LA) but the n-3 Adq diet also contained $3.1\%$ LNA. Rats consuming the n-3 Def diet showed a lower brain $(50\%\;in\;13\;wks\;and\;70\%\;in\;15\;wks,\;p<0.05)$ and retinal $(50\%\;in\;13\;wks\;and\;63\%\;in\;15\;wks,\;p<0.05)$ DHA than those on the n-3 Adq diet, which was largely compensated for by an increase in docosapentaenoic acid (22:5n-6, DPAn-6). In the liver of the n-3 Def group, the percentage of DHA decreased by $97\%$ at 3 wks of age with an apparent increase in DPAn-6 relative to the n-3 Adq group (p<0.05), while there was a $65\%$ lower liver DHA in n-3 Def group at 15 wks of age than the n-3 Adq group (p<0.05). Liver arachidonic acid (20:4n-6, AA) was increased at 3 wks of age but decreased at 15 wks of age in the n-3 Def group compared with n-3 Adq group (p<0.05). In conclusion, the replacement of DHA by DPAn-6 in brain and retina fatty acid composition may be related to the suboptimal function in spatial learning, memory and visual acuity. This artificial rearing method presents a first generation model for n-3 deficiency that is similar to the case of human nutrition that commonly employed two generation model.

Comparative Studies on the Fatty Acid Compositions of the Korean Salt Marsh Plants in the West Sea (한국서해에 서식하는 염생식물의 지방산 조성 비교)

  • Kim, You-Ah;Um, Young-Ran;Lee, Jung-Im;Kim, Hae-Jin;Lim, Sun-Young;Nam, Taek-Jeong;Seo, Young-Wan
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.521-526
    • /
    • 2009
  • Fatty acid is an important component of many biological processes. However, an imbalance in diet-especially, a n-3 polyunsaturated fatty acids (PUFAs) deficiency-causes several diseases such as diabetes, cardiovascular disease and cancer. In this study, we analyzed the fatty acid contents and compositions of 26 species of Korean salt marsh plants and found high fatty acid contents from S. herbacea ($148.75\;{\mu}g$/mg-dry wt.), S. komarvii ($119.05\;{\mu}g$/mg-dry wt.), C. heterocarpa ($79.23\;{\mu}g$/mg-dry wt.), A. capillaris ($71.65\;{\mu}g$/mg-dry wt.), and L. tetragonum ($67.02\;{\mu}g$/mg-dry wt.). In the case of saturated fatty acids (SFAs) composition, palmitic acid is richest in most salt marsh plants. On the other hand, oleic acid and linoleic acid are major components of monounsaturated fatty acid and n-6 PUFA, respectively. In addition, n-3 PUFAs such as LNA (linolenic acid), EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid) known as the main fatty acid components of fish oils and seaweeds, were also found in S. herbacea, S. komarvii, T. tetragonoides, A. capillaris and G. littoralis.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Food and nutrient intake status of Korean elderly by degree of cognitive function (노인의 인지기능상태에 따른 식품과 영양소 섭취실태)

  • Kim, Hye-Young;Lee, Jung-Sug;Youn, Jong-Chul;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: This study was conducted to examine the relationship among cognitive function, nutrition screening initiative (NSI) score, and food intake status. Methods: A total of 409 subjects aged over 60 years were recruited from the Yongin dementia prevention and control center. Mini Mental State Examination Dementia Screening (MMSE-DS) method was used to assess the cognitive function of the subjects. Information on health related behaviors and food intake was collected by face to face interview using a structured questionnaire. The questionnaires included the NSI DETERMINE checklist, food intake sheets by 24 hr recall method and by semi-quantified food frequency questionnaire. Results: Subjects were divided into low cognitive or normal groups according to the MMSE-DS result. The prevalence of low cognitive function in the subjects was 25.7%. The low cognitive group exercised less and had higher nutritional health risk than the normal group. The low cognitive group had lower consumption of polyunsaturated fatty acid and higher tendency of thiamin, riboflavin, and iron deficiency. The low cognitive group had less frequency of eating mackerel, pepper, tangerine, and watermelon and higher frequency of eating white rice and cookies than the normal group. Conclusion: The results of this study imply that the cognitive function of elderly is related to exercise behavior, nutritional health risk, and food and nutrient intake status.