• 제목/요약/키워드: myogenesis

검색결과 96건 처리시간 0.029초

鷄胚의 細胞胞分化에 있어서 細胞 및 原形質膜 糖蛋白質의 變化 (Alterations in Cellular and Plasma Membrane Glycopreteins in Chicken Myogenesis in Vitro)

  • Kang, Man-Sik;Song, Woo-Keun;Ho. Woo Nam;Chung, Chang-Yong
    • 한국동물학회지
    • /
    • 제28권3호
    • /
    • pp.125-136
    • /
    • 1985
  • 본 연구는 계배근세포가 분화하는 과정에서 조절을 받는 단백질이 있는 지의 여부를 가려내기 위해서 근세포 및 그 원형질막의 당단백질의 변화양상을 표지된 Con A 염색법을 써서 검토한 것이다. 당단백질 중에는 세포에서만 발견되는 것이 8종, 원형질막에서만 발견되는 것이 4종, 그리고 공통적으로 발견되는 것이 9종이 있었다. 그중에서 분화하는 동안에 변하지 않는 것, 증가하는 것, 감소하는 것, 증가하다 감소하는 것, 그리고 감소하다 증가하는 것 등 다섯가지 종류가 있었다. 본 연구에서 fibronectin이 근관형성후에는 감소되는 사실이 판명되었는데, 이 결과는 지금까지 논란의 대상이 되어오던 상반된 결과들이 분화과정 중에서 택한 시기의 차이에 따라 나타난 결과들로 볼 수 있음을 보여주었다. 일반적으로 근세포의 융합이 진행될수록 고분자량의 당단백질은 감소하고, 대신 저분자량의 당단백질은 증가하는 경향성을 보였고, 이와같은 결과는 근원세포가 융합을 함에 따라서 당단백질의 구조적인 재편성이 일어남을 암시하는 것으로 받아들여졌다.

  • PDF

Myogenic Differentiation of p53- and Rb-deficient Immortalized and Transformed Bovine Fibroblasts in Response to MyoD

  • Jin, Xun;Lee, Joong-Seub;Kwak, Sungwook;Jung, Ji-Eun;Kim, Tae-Kyung;Xuo, Chenxiong;Hong, Zhongshan;Li, Zhehu;Kim, Sun-Myoung;Whang, Kwang Youn;Hong, Ki-Chang;You, Seungkwon;Choi, Yun-Jaie;Kim, Hyunggee
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.206-212
    • /
    • 2006
  • We have established in culture a spontaneously immortalized bovine embryonic fibroblast (BEF) cell line that has lost p53 and $p16^{INK4a}$ functions. MyoD is a muscle-specific regulator capable of inducing myogenesis in a number of cell types. When the BEF cells were transduced with MyoD they differentiated efficiently to desmin-positive myofibers in the presence of 2% horse serum and 1.7 nM insulin. The myogenic differentiation of this cell line was more rapid and obvious than that of C2C12 cells, as judged by morphological changes and expression of various muscle regulatory factors. To confirm that lack of the p53 and $p16^{INK4a}$ pathway does not prevent MyoD-mediated myogenesis, we established a cell line transformed with SV40LT (BEFV) and introduced MyoD into it. In the presence of 2% horse serum and 1.7 nM insulin, the MyoD-transduced BEFV cells differentiated like the MyoD-transduced BEFS cells, and displayed a similar pattern of expression of muscle regulatory proteins. Taken together, our results indicate that MyoD overexpression overcomes the defect in muscle differentiation associated with immortalization and cell transformation caused by the loss of p53 and Rb functions.

Comparison of Gene Expression Levels of Porcine Satellite Cells from Postnatal Muscle Tissue during Differentiation

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.219-224
    • /
    • 2013
  • Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90~100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson's, oil red O, and Alizarin red staining respectively. We performed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteoblast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were induced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strategies for augmenting meat quality.

Maternal nutrition altered embryonic MYOD1, MYF5, and MYF6 gene expression in genetically fat and lean lines of chickens

  • Li, Feng;Yang, Chunxu;Xie, Yingjie;Gao, Xiang;Zhang, Yuanyuan;Ning, Hangyi;Liu, Guangtao;Chen, Zhihui;Shan, Anshan
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1223-1234
    • /
    • 2022
  • Objective: The objectives of this study were to evaluate the effects of daily feed intake during the laying period on embryonic myogenic differentiation 1 (MYOD1), myogenic factor 5 (MYF5), and myogenic factor 6 (MYF6) gene expression in genetically fat and lean lines of chickens. Methods: An experiment in a 2×2 factorial design was conducted with two dietary intake levels (100% and 75% of nutrition recommendation) and two broiler chicken lines (fat and lean). Two lines of hens (n = 384 for each line) at 23th week of age were randomly divided into 4 treatments with 12 replicates of 16 birds. The experiment started at 27th week of age (5% egg rate) and ended at 54th week of age. Hatched eggs from the medium laying period were collected. Real time polymerase chain reaction analysis was used to analyse the MYOD1, MYF5, and MYF6 mRNA levels of E7, E9, E11, E13, and E15 body tissues and E17, E19, and E21 chest and thigh muscle samples. Results: The results indicated that there were significant effects of line, dietary intake, and interactions between them on MYOD1, MYF5, and MYF6 gene mRNA expression levels in embryonic tissues. Low daily feed intake did not change the expression trend of MYOD1 mRNA in either line, but changed the peak values, especially in lean line. Low daily feed intake altered the trend in MYF5 mRNA expression level in both lines and apparently delayed its onset. There was no apparent effect of low daily feed intake on the trends of MYF6 mRNA expression levels in either line, but it significantly changed the values on many embryonic days. Conclusion: Maternal nutrient restriction affects myogenesis and is manifested in the expression of embryonic MYOD1, MYF5, and MYF6 genes. Long term selection for fat deposition in broiler chickens changes the pattern and intensity of myogenesis.

C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할 (Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts)

  • 김달아;공경혜;조현정;이미란
    • 대한임상검사과학회지
    • /
    • 제55권3호
    • /
    • pp.184-194
    • /
    • 2023
  • 골격근은 대사, 열기반 온도 조절, 그리고 전반적인 체내 균형을 위해 필수적인 조직이고 근발생(myogenesis)이라는 다단계 과정을 거쳐서 근관세포를 형성한다. p-아니스알데하이드(p-anisaldehyde, PAA) (4-메톡시벤잘데하이드)는 아니스 씨에서 추출된 에센셜 오일의 주성분이지만, 골격근에서의 기능은 아직까지 알려져 있지 않다. 따라서, 우리는 마우스 C2C12 근육모세포를 이용하여 근육분화가 PAA에 의해 영향을 받는지를 연구하였다. C2C12 근육모세포의 분화를 유도하기 위해 이 세포를 분화배지에서 5일동안 배양하였고, 매일 PAA (50 또는 200 ㎍/mL)를 포함하는 새로운 배지로 교체하였다. 대조군으로서 PAA가 포함되지 않은 배지를 사용하였다. 우리는 분화시작 후 1, 3, 5일째에 근관세포의 길이와 지름을 측정함으로써 PAA가 근관 형성에 미치는 영향을 평가하였고, quantitative real-time polymerase chain reaction 분석을 통해 PAA가 근육 표지인자(myoblast determination protein 1, myogenin, myocyte enhancer factor 2C, muscle creatine kinase, 및 myosin heavy chain)와 근육위축 관련 유전자(atrogin-1과 muscle ring finger-1 [MuRF-1])의 발현에 미치는 영향을 분석하였다. 또한, 주요 근육형성 키나아제인 protein kinase B (Akt)의 인산화를 웨스턴 블롯을 이용해 관찰하였다. 그 결과 PAA가 더 작고 얇은 근관 형성을 유의하게 유발하며 근육 표지인자의 발현을 감소시킨다는 것을 확인하였다. 또한, atrogin-1과 MuRF-1의 발현이 PAA에 의해서 감소하였는데, 이는 Akt 인산화의 감소와 일치하는 결과이다. 결론적으로, 본 연구결과는 PAA가 Akt 인산화와 활성화를 감소시킴으로써 C2C12 세포에서의 근육 분화를 억제하는 역할을 한다는 것을 증명한다.

Myogenic Satellite Cells and Its Application in Animals - A Review

  • Singh, N.K.;Lee, H.J.;Jeong, D.K.;Arun, H.S.;Sharma, L.;Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1447-1460
    • /
    • 2009
  • Myogenic satellite cells have been isolated and identified by several recently elucidated molecular markers. Furthermore, knowledge about the precise function of these markers has provided insight into the early and terminal events of satellite cells during proliferation, differentiation, transdifferentiation, specification and activation. Recently, quiescent myogenic satellite cells have been associated with possession of Pax 3 and 7 that represent pluripotent stem cells capable of differentiating into other lineages. However, the mechanism by which myogenic satellite cells attain pluripotent potential remain elusive. Later, transdifferentiating ability of these cells to another lineage in the absence or presence of certain growth factor/ or agents has revolutionized the scope of these pluripotent myogenic satellite cells for manipulation of animal production (in terms of quality and quantity of muscle protein) and health (in terms of repair of skeletal muscle, cartilage or bone).

Effect of a c-MYC Gene Polymorphism (g.3350G>C) on Meat Quality Traits in Berkshire

  • Oh, J.D.;Kim, E.S.;Lee, H.K.;Song, K.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1545-1550
    • /
    • 2015
  • c-MYC (v-myelocytomatosis viral oncogene homologue) is a transcription factor that plays important role in many biological process including cell growth and differentiation, such as myogenesis and adipogenesis. In this study, we aimed to detect MYC gene polymorphisms, their genotype frequencies and to determine associations between these polymorphisms and meat quality traits in Berkshire pigs. We identified a single nucleotide polymorphism (SNP) in intron 2 of MYC gene by Sanger sequencing, i.e., g.3350G>C (rs321898326), that is only found in Berkshire pigs, but not in other breeds including Duroc, Landrace, and Yorkshire pigs that were used in this study. Genotypes of total 378 Berkshire pigs (138 sows and 240 boars) were determined using Hha I restriction enzyme digestion after polymerase chain reaction. Observed allele frequencies of GG, GC, and CC genotypes were 0.399, 0.508, and 0.093 respectively. Statistical analysis indicated that the g.3350G>C polymorphism was significantly associated with $pH_{45min}$ and cooking loss (p<0.05), suggesting that g.3350G>C SNP can be used for pre-selection of $pH_{45min}$ and cooking loss traits in Berkshire pigs.

Meeting the meat: delineating the molecular machinery of muscle development

  • Jan, Arif Tasleem;Lee, Eun Ju;Ahmad, Sarafraz;Choi, Inho
    • Journal of Animal Science and Technology
    • /
    • 제58권5호
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.

Satellite Cells Isolated from Adult Hanwoo Muscle Can Proliferate and Differentiate into Myoblasts and Adipose-like Cells

  • Kook, Sung-Ho;Choi, Ki-Choon;Son, Young-Ok;Lee, Kyung-Yeol;Hwang, In-Ho;Lee, Hyun-Jeong;Chang, Jong-Soo;Choi, In-Ho;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.239-245
    • /
    • 2006
  • This study examined whether adult bovine muscle satellite cells from 30-month-old Hanwoo cattle are multipotential. The satellite cells were found to have the potential to proliferate and differentiate into myoblasts with the formation of multinucleated cells. In addition, treatment with the peroxisome proliferator activating receptor-${\gamma}$ ($PPAR{\gamma}$) agonist, rosiglitazone, promoted their trans-differentiation into adipocytes with significant increases in glycerol accumulation and glycerol-3-phosphate dehydrogenase activity. Western blot analysis revealed that increased levels of the adipocyte fatty acid-binding protein, $PPAR{\gamma}$ and of CCAAT/enhancerbinding protein were closely related to rosiglitazoneinduced differentiation of the cells. These findings demonstrate that satellite cells from adult Hanwoo cattle are multipotent, and that their trans-differentiation into adipocytes can be induced by rosiglitazone.

The role of calpain in skeletal muscle

  • Pandurangan, Muthuraman;Hwang, Inho
    • Animal cells and systems
    • /
    • 제16권6호
    • /
    • pp.431-437
    • /
    • 2012
  • Calpains are a class of proteins that belong to the calcium-dependent, non-lysosomal cysteine proteases. There are three major types of calpains expressed in the skeletal muscle, namely, ${\mu}$-calpain, m-calpain, and calpain 3, which show proteolytic activities. Skeletal muscle fibers possess all three calpains, and they are $Ca^{2+}$-dependent proteases. The functional role of calpains was found to be associated with apoptosis and myogenesis. However, calpain 3 is likely to be involved in sarcomeric remodeling. A defect in the expression of calpain 3 leads to limb-girdle muscular dystrophy type 2A. Calpain 3 is found in skeletal muscle fibers at the N2A line of the large elastic protein, titin. A substantial proportion of calpain 3 is activated 24 h following a single bout of eccentric exercise. In vitro studies indicated that calpain 3 can be activated 2-4 fold higher than normal resting cytoplasmic [$Ca^{2+}$]. Characterization of the calpain system in the developing muscle is essential to explain which calpain isoforms are present and whether both ${\mu}$-calpain and m-calpain exist in differentiating myoblasts. Information from such studies is needed to clarify the role of the calpain system in skeletal muscle growth. It has been demonstrated that the activation of ubiquitous calpains and calpain 3 in skeletal muscle is very well regulated in the presence of huge and rapid changes in intracellular [$Ca^{2+}$].