• Title/Summary/Keyword: myofibrillar

Search Result 233, Processing Time 0.034 seconds

Changes of Protein Composition and Muscle Tissues in Top Shell Meat during Frozen Storage (바다방석고둥육의 동결저장중 단백질조성과 근육조직의 변화)

  • 송대진;김창용;박환준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.763-770
    • /
    • 1993
  • To investigate the quality changes during frozen storage, top shell, Omphalius pfeifferi capenteri, was stored at -18$^{\circ}C$, -$25^{\circ}C$ and -3$0^{\circ}C$ immediately after shelling and water holding capacity, protein composition and histological features were examined with the lapsed period of the storage. During the storage period, amount of free drip was increased with higher frozen temperature and longer frozen period, but with the longer storage period, the lower water holding capacity was observed. The extractability and composition of muscle protein, sarcoplasmic protein and stroma protein were rather stable regardless of frozen temperature and frozen storage period. However, the extractability of myofibrillar protein was decreased with higher frozen temperature and longer frozen storage period. On the changes of muscle tissue structure, following points were observed. 1) In the muscle tissue structure of fresh sample, fine muscle fiber was closely distributed all over the tissue regardless of cross and longitudinal section. 2) In tissue structure under frozen state, it was observed that ice crystals apparently grew with the higher storage temperature. Empty spaces between muscle bundles which wee formed by aggregations of muscle fiber were observed after 3 months storage at -18$^{\circ}C$ . 3) Tissue structure in thawed state was restored satisfactorily after 1 month storage regardless of storage temperature. After 3 months storage at -3$0^{\circ}C$, muscle tissue was well restored, but at -18$^{\circ}C$, empty spaces were apparent due to incomplete restoration.

  • PDF

The Effect of Ginseng on Muscle Injury and Inflammation

  • Alvarez A.I.;Oliveira A. C. Cabral de;Perez A.C.;Vila L.;Ferrando A.;Prieto J.G.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.159-175
    • /
    • 2002
  • The effect of Panax ginseng administration in muscle inflammatory process induced after eccentric exercise, that causes myofibrillar disruption, was studied. Changes in lipid peroxidation, inflammation, glycogen levels in muscle and release of myocellular proteins to blood were measured. The analyses were performed immediately after eccentric exercise and over week since this period are necessary for the muscle damage-repair cycle. The ginseng extract $(100\;mg\;kg^{-1})$ was orally administered to rats for three months, before the eccentric exercise performance. The results showed the protective role of ginseng against skeletal muscle damage. This effect could be associated with their membrane stabilising capacity since creatine kinase (CK) activity was significantly decreased 96 h post-exercise from $523{\pm}70\;to\;381{\pm}53$ and 120 h post-exercise from $443{\pm}85\;to\;327{\pm}75$ in treated animals. ${\beta}-glucuronidase$ activity, as indicator of inflammation, showed a significant reduction of about $15-25\%$ in soleus, vastus and triceps in these post-exercise times. The lipid peroxidation, measured by malondyaldehyde levels, was significantly decreased in the 24 h postexercise period in soleus and vastus intermedius muscles and on the recovery period. Finally ginseng administration reduced significantly the decrease of the glycogen levels immediately after exercise and when the regenerative process took place (72-168 h post exercise). Collectively, the results have showed that ginseng did not inhibit the vital inflammatory response process associated with the muscle damage-repair cycle but presumably ameliorate the injury.

  • PDF

Different Effect of Sodium Chloride Replacement with Calcium Chloride on Proteolytic Enzyme Activities and Quality Characteristics of Spent Hen Samgyetang

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.869-882
    • /
    • 2021
  • Sodium chloride (NaCl) replacement with calcium chloride (CaCl2) effect on protein solubility, proteolytic enzyme and quality characteristics of a chicken soup prepared from spent hen (SH) chicken were investigated. By means of immerse marination prior to cooking, a total of 60 skinless SH breast meat were randomly allocated into ten groups admitted to treatments with marinade solution containing sodium tripolyphosphate (STPP) and reduced percentage of NaCl with CaCl2 at 0%, 25%, 50%, 75%, and 100% at 4±2℃ for 20 h. STPP was adjusted to 0.5% for all treatments and NaCl replacement at 0% was used as control. The different methods, particularly boiling at 100℃ and retorting at 121℃, 1.5 kgf/cm2 for 60 minutes, were applied following marination. An upregulation of cathepsin-B and caspase-3 enzymes were a consequences from a higher percentage of CaCl2 within meat environment. Accordingly, modified the protein solubility in particular the myofibrillar and total protein solubility. In addition, a significant increase in water holding capacity (WHC), pH value, myofibril fragmentation index (MFI), and moisture content was obtained due to salt replacement (p<0.05). Limited effect was observed for shear force value, collagen content and cooking yield. Eventually, this study implied that although protelytic enzyme and protein solubility was upregulated by the replacement of NaCl with CaCl2 at >75%, extensive effect on texture properties was not observed. Therefore, NaCl replacement at 75% could be a promising strategy for quality improvement of SH chicken soup.

Quality Enhancement of Frozen Chicken Meat Marinated with Phosphate Alternatives

  • Mahabbat Ali;Shine Htet ,Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Ji-Young Park;Jong Hyun Jung;Aera Jang;Jong Youn Jeong;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.245-268
    • /
    • 2023
  • The effects of phosphate alternatives on meat quality in marinated chicken were investigated with the application of chilling and freezing. Breast muscles were injected with solution of the green weight containing 1.5% NaCl and 2% sodium tripolyphosphate (STPP) or phosphate alternatives. Treatment variables consisted of no phosphate [control (-)], 0.3% sodium tripolyphosphate [control (+)], 0.3% prune juice (PJ), 0.3% oyster shell, 0.3% nano-oyster shell, and 0.3% yeast and lemon extract (YLE) powder. One-third of the meat samples were stored at 4℃ for 1 d, and the rest of the meats were kept at -18℃ for 7 d. In chilled meat, a lower drip loss was noted for control (+) and YLE, whereas higher cooking yield in YLE compared to all tested groups. Compared with control (+), the other treatments except PJ showed higher pH, water holding capacity, moisture content, lower thawing and cooking loss, and shear force. Natural phosphate alternatives except for PJ, improved the CIE L* compared to control (-), and upregulated total protein solubility. However, phosphate alternatives showed similar or higher oxidative stability and impedance measurement compared to control (+), and an extensive effect on myofibrillar fragmentation index. A limited effect was observed for C*, h°, and free amino acids in treated meat. Eventually, the texture profile attributes in cooked of phosphate alternatives improved except for PJ. The results indicate the high potential use of natural additives could be promising and effective methods for replacing synthetic phosphate in chilled and frozen chicken with quality enhancement.

Evaluation of the physicochemical, metabolomic, and sensory characteristics of Chikso and Hanwoo beef during wet aging

  • Dongheon Lee;Hye-Jin Kim;Azfar Ismail;Sung-Su Kim;Dong-Gyun Yim;Cheorun Jo
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1101-1119
    • /
    • 2023
  • Objective: This study aimed to evaluate the physicochemical, metabolomic, and sensory qualities of Chikso and Hanwoo beef during 28 days of wet aging. Methods: Rump and loins from Hanwoo and Chikso were obtained and wet-aged for 28 days at 4℃. The samples were collected at 7-day interval (n = 3 for each period). Physicochemical qualities including pH, meat color, shear force value, and myofibrillar fragmentation index, metabolomic profiles, and sensory attributes (volatile organic compounds and relative taste intensities) were measured. Results: Chikso showed a significantly higher shear force value than Hanwoo on day 0; however, no differences between breeds were found after day 14, regardless of the cuts. Overall, Chikso had more abundant metabolites than Hanwoo, especially L-carnitine and tyrosine. Among the volatiles, the ketone ratio was higher in the Chikso rump than the Hanwoo rump; however, Chikso had fewer alcohols and aldehydes than Hanwoo. Chikso rump showed higher taste intensities than the Hanwoo rump on day 0, and sourness decreased in Chikso, but increased in the Hanwoo rump on day 14. Wet aging for 14 days intensified the taste of Chikso loin but reduced the umami intensity of Hanwoo loin. Conclusion: Chikso had different metabolomic and sensory characteristics compared to Hanwoo cattle, and 14 days of wet aging could improve its tenderness and flavor traits.

Comparison of Meat Quality Characteristics and Proteolysis Trends associated with Muscle Fiber Type Distribution between Duck Pectoralis Major and Iliotibialis Muscles

  • Cheng, Huilin;Song, Sumin;Park, Tae Sub;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.266-279
    • /
    • 2022
  • This study was conducted to evaluate the proteolysis trends and change in meat quality during 10 days of cold storage in duck M. pectoralis major (PM) and M. iliotibialis (IL). Duck IL had a higher pH and greater degree of lightness but lower cooking loss than PM (p<0.05). During the 10-day cold storage, the pH value of PM declined significantly (p<0.05), while the meat quality traits of IL were not affected by cold storage (p>0.05). In PM, the redness increased from day 1 to day 5, while cooking loss was lower on day 10 compared to day 5 (p<0.05). There were no significant differences in the activities of cathepsin B and proteasome 20S during cold storage (p>0.05). The activity of calpains declined gradually during 10 days of storage (p<0.05), and the activity of calpains in PM was higher than that in IL (p<0.05). A total of 5,155 peptides were detected and derived from 34 proteins of duck PM muscle, whereas 4,222 peptides derived from 32 proteins were detected from duck IL muscle. Duck PM muscle was composed only of fast type of muscle fiber, whereas IL muscle was composed of both slow and fast types. The proteins responsible for glycolysis or myofibrillar proteins were closely related to changes in meat color or water-holding capacity during cold storage. These results suggest that changes in meat quality characteristics during cold storage are closely related to protein degradation, which is also related to the distribution of muscle fiber types.

Differences in pork myosin solubility and structure with various chloride salts and their property of pork gel

  • Hyun Gyung Jeong;Jake Kim;Seonmin Lee;Kyung Jo;Hae In Yong;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1065-1080
    • /
    • 2023
  • The solubility and structure of myosin and the properties of pork gel with NaCl, KCl, CaCl2, and MgCl2 were investigated. Myofibrillar proteins (MPs) with phosphate were more solubilized with NaCl than with KCl (p < 0.05). CaCl2 and MgCl2 showed lower MP solubilities than those of NaCl and KCl (p < 0.05). The α-helix content of myosin was lower in KCl, CaCl2, and MgCl2 than in NaCl (p < 0.05). The pH of pork batter decreased in the order of KCl, NaCl, MgCl2, and CaCl2 (p < 0.05). The cooking yield of the pork gel manufactured with monovalent salts was higher than that of the pork gel manufactured with divalent salts (p < 0.05). The pork gel manufactured with KCl and MgCl2 showed lower hardness than that of the pork gel manufactured with NaCl. The solubility and structure of myosin were different with the different chloride salts and those led the different quality properties of pork gel. Therefore, the results of this study can be helpful for understanding the quality properties of low-slat meat products manufactured by replacing sodium chloride with different chloride salts.

Impact of Humectants on Physicochemical and Functional Properties of Jerky: A Meta-Analysis

  • Shine Htet Aung;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.464-482
    • /
    • 2024
  • This study aimed to determine the effects of humectants on moisture content, water activity, tenderness, color, microbiological analysis, protein denaturation, and oxidation of jerky. A thorough search for papers published in scientific journals that examined the impacts of humectants on jerky was carried out using Web of Science, Google Scholar, PubMed, and Science Direct. Only 14 studies matched inclusion requirements. They were used in the meta-analysis to synthesise quantitative findings. In the current investigation, jerky produced with beef, poultry, goat, or pork was used. The standardised mean difference (SMD) between treatments with humectants and controls was examined to investigate the effects of humectants using random-effects models. Heterogeneity was investigated using meta-regression. A subgroup analysis was carried out for significant factors. Results revealed that the addition of humectants had no significant impact on water activity, pH, fat, ash, CIE L*, or CIE a* (p>0.05). However, humectant addition significantly increased moisture (SMD=1.28, p<0.05), CIE b* (SMD=1.67, p<0.05), and overall acceptability (SMD=1.73, p<0.05). It significantly decreased metmyoglobin (SMD=-0.96, p<0.05), shear force (SMD=-0.84, p<0.05), and protein (SMD=-1.61, p<0.05). However, it was difficult to get a firm conclusion about how humectants affected the myofibrillar fragmentation index, total plate count, and 2-thiobarbituric acid-reactive substances because there were fewer than ten studies. To sum up, the proper use of humectants in jerky demands careful attention to both type and quantity, needing a delicate balancing act with other contributing factors.

Enzymatic hydrolyzation of Cordyceps militaris mushroom extracts and its effect on spent hen chicken

  • Farouq Heidar Barido;Puruhita;Bayu Setya Hertanto;Muhammad Cahyadi;Lilik Retna Kartikasari;Joko Sujiwo;Juntae Kim;Hack-Youn Kim;Aera Jang;Sung Ki Lee
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1277-1288
    • /
    • 2024
  • Objective: This study was aimed to investigate the effect of fresh and dried hydrolyzed Cordyceps militaris (CM) mushroom with proteolytic enzymes; bromelain (CMB), flavorzyme (CMF), and mixture of bromelain: flavorzyme (CMBF) on quality properties of spent hen chicken. Methods: Mushroom extract (CME) were combined with three proteolytic enzyme mixtures that had different peptidase activities; stem bromelain (CMB), flavorzyme (CMF), and mixture of stem bromelain:flavorzyme (CMBF) at (1:1). The effect of these hydrolysates was investigated on spent hen breast meat via dipping marination. Results: Hydrolyzation positively alters functional properties of CM protease. in which bromelain hydrolyzed group (CMB) displayed the highest proteolytic activity at 4.57 unit/mL. The antioxidant activity had a significant increment from 5.32% in CME to 61.79% in CMB. A significantly higher emulsion stability index and emulsification activity index compared to CME were another result from hydrolyzation (p<0.05). Texture properties along with the shear force value and myofibrillar fragmentation index were notably improved under CMB and CMBF in fresh condition. Marination with CM mushroom protease that was previously hydrolyzed with enzymes was proven to also increase the nucleotide compounds, indicated by higher adenosine 5'-monophosphate (AMP) and inosine 5'-monophosphate (IMP) in hydrolysate groups (p<0.05). The concentration of both total and insoluble collagen remained unchanged, meaning less effect from CM protease. Conclusion: This study suggested the hydrolyzation of CM protease with bromelain or a mixture of bromelain:flavourzyme to significantly improve functional properties of protease and escalate the taste-related nucleotide compounds and texture profiles from spent hen breast meat.

Development of semi-dried goat meat jerky using tenderizers considering the preferences of the elderly

  • Shine Htet Aung;Md. Altaf Hossain;Ji-Young Park;Young-Sun Choi;Ki-Chang Nam
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.807-833
    • /
    • 2024
  • Elderly people avoid eating red meat and dried meat product due to its texture and stiffness; they deprive them of rich sources of nutrients. In addition, food-related diseases are exponentially increasing due to using synthetic additives in food products. Therefore, this research aimed to develop semi-dried goat meat jerky considering geriatric preferences by using natural tenderizers and nitrate. Four treatments were formulated negative control (NC [synthetic nitrite without tenderizers]), positive control (PC [Swiss chard without tenderizers]), T1 (Swiss chard with pineapple powder), and T2 (Swiss chard with pineapple and tomato powder). T1 and T2 had higher processing yield, and rehydration capacity compared with NC and PC. The fat content of T1 and T2 was lower than the control groups. Moisture was significantly higher in T1, NC, and T2 than in PC (p < 0.05). T2 showed the lowest water activity (0.87), lowest shear force (4.82 kgf), and lowest total plate count (TPC). The lowest pH and thiobarbituric acid reactive substances (TBARS) were observed in T1 and T2. T1 showed the lowest lightness and the maximum redness (p < 0.05) while PC showed the lowest yellowness. During the storage period, moisture and pH decreased, and TPC and TBARS significantly increased whereas water activity is stable regardless of the treatment. The results of the myofibrillar fragmentation index (MFI) and sodium dodecyl sulfate-polyacrylamide gel revealed that T1 and T2 more effectively converted protein to polypeptides. In addition, tenderizers positively affected thrombogenicity, atherogenicity, and hypocholesterolemic/hypercholesterolemic indices. T2 observed the highest overall sensory acceptance by reducing goaty flavor. Overall, jerky treated with tenderizers is easily chewable and digestible for the elderly due to its tenderness and essential fatty acids that would be senior-friendly food.