• Title/Summary/Keyword: mutation operator

Search Result 67, Processing Time 0.021 seconds

Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm

  • Kaya, Mustafa
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.493-500
    • /
    • 2018
  • Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.

Incorporating Genetic Operators into Optimizing Highway Alignments (도로선형최적화를 위한 유전자 연산자의 적용)

  • Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.43-54
    • /
    • 2004
  • This study analyzes characteristics and applicability of genetic algorithms and genetic operators to optimize highway alignments. Genetic algorithms, one of artificial intelligence techniques, are fast and efficient search algorithms for generating, evaluation and finding optimal highway alignment alternatives. The performance of genetic algorithms as an optimal search tool highly depends on genetic operators that are designed as a problem-specific. This study adopts low mutation operators(uniform mutation operator, straight mutation operator, non-uniform mutation operator whole non-uniform mutation operator) to explore whole search spaces, and four crossover operators(simple crossover operator, two-point crossover operator, arithmetic crossover operator, heuristic crossover operator) to exploit food characteristics of the best chromosome in previous generations. A case study and a sensitivity analysis have shown that the eight problem-specific operators developed for optimizing highway alignments enhance the search performance of genetic algorithms, and find good solutions(highway alignment alternatives). It has been also found that a mixed and well-combined use of mutation and crossover operators is very important to balance between pre-matured solutions when employing more crossover operators and more computation time when adopting more mutation operators.

ON THE REPRESENTATION OF PROBABILITY VECTOR WITH SPECIAL DIFFUSION OPERATOR USING THE MUTATION AND GENE CONVERSION RATE

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • We will deal with an n locus model in which mutation and gene conversion are taken into consideration. Also random partitions of the number n determined by chromosomes with n loci should be investigated. The diffusion process describes the time evolution of distributions of the random partitions. In this paper, we find the probability of distribution of the diffusion process with special diffusion operator $L_1$ and we show that the average probability of genes at different loci on one chromosome can be described by the rate of gene frequency of mutation and gene conversion.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms (유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구)

  • Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.

Statistical Investigation on Class Mutation Operators

  • Ma, Yu-Seung;Kwon, Yong-Rae;Kim, Sang-Woon
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.140-150
    • /
    • 2009
  • Although mutation testing is potentially powerful, it is a computationally expensive testing method. To investigate how we can reduce the cost of object-oriented mutation testing, we have conducted empirical studies on class mutation operators. We applied class mutation operators to 866 classes contained in six open-source programs. An analysis of the number and the distribution of class mutants generated and preliminary data on the effectiveness of some operators are provided. Our study shows that the overall number of class mutants is smaller than for traditional mutants, which offers the possibility that class mutation can be made practically affordable.

  • PDF

Design and Implementation of Learning Contents Using Interactive Genetic Algorithms with Modified Mutation (변형된 돌연변이를 가진 대화형 유전자 알고리즘을 이용한 학습 콘텐츠의 설계 및 구현)

  • Kim Jung-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.85-92
    • /
    • 2005
  • In this Paper, we develope an effective web-based learning contents using interactive genetic algorithms with modified mutation operation. In the interactive genetic algorithm, reciprocal exchange mutation is used. But. we modify the mutation operator to improve the learning effects. The new web-based learning contents using interactive genetic algorithm provide the dynamic learning contents providing and real-time test system. Especially, learners can execute the interactive genetic algorithm according to the learners' characters and interests to select the efficient learning environments and contents sequences.

  • PDF

Subtour Preservation Crossover Operator for the Symmetric TSP (대칭 순회 판매원문제를 위한 Subtour 보존 교차 연산자)

  • Soak, Sang-Moon;Lee, Hong-Girl;Byun, Sung-Cheal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.201-212
    • /
    • 2007
  • Genetic algorithms (GAs) are very useful methods for global search and have been applied to various optimization problems. They have two kinds of important search mechanisms, crossover and mutation. Because the performance of GAs depends on these operators, a large number of operators have been developed for improving the performance of GAs. Especially, many researchers have been more interested in a crossover operator than a mutation operator. The reason is that a crossover operator is a main search operator in GAs and it has a more effect on the search performance. So, we also focus on a crossover operator. In this paper we first investigate the drawback of various crossovers, especially subtour-based crossovers and then introduce a new crossover operator to avoid such drawback and to increase efficiency. Also we compare it with several crossover operators for symmetric traveling salesman problem (STSP) for showing the performance of the proposed crossover. Finally, we introduce an efficient simple hybrid genetic algorithm using the proposed operator and then the quality and efficiency of the obtained results are discussed.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Comparison of Adaptive Operators in Genetic Algorithms (유전알고리즘에서 적응적 연산자들의 비교연구)

  • Yun, Young-Su;Seo, Seoun-Lock
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.189-203
    • /
    • 2002
  • In this paper we compare the performances of adaptive operators in genetic algorithm. For the adaptive operators, the crossover and mutation operators of genetic algorithm are considered. One fuzzy logic controller is developed in this paper and two heuristics is presented from conventional works for constructing the operators. The fuzzy logic controller and two conventional heuristics adaptively regulate the rates of the operators during genetic search process. All the algorithms are tested and analyzed in numerical examples. Finally, the best algorithm is recommended.

  • PDF