• 제목/요약/키워드: mutant protein

검색결과 889건 처리시간 0.024초

Stability and Folding of a Mutant Ribose Binding Protein of Escherichia coli

  • Kim, Joon-Sik;Kim, Hyoungman
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.25-25
    • /
    • 1996
  • A mature mutant ribose binding protein (RBP) of Escherichia coli was obtained by site-directed mutagenesis, replacing Thr-3 in the N-domain of wild-type mature RBP (WT -mRBP) with a Trp residue (N- Trp-mRBP). The equilibrium unfolding properties and the refolding kinetics of this protein were monitored by fluorescence and circular dichroism (CD). (omitted)

  • PDF

Proteomic Identification of Differentially Expressed Proteins in Arabidopsis Mutant ntm1-D with Disturbed Cell Division

  • Lee, Kyung Hyeon;Kim, Youn-Sung;Park, Chung-Mo;Kim, Hie-Joon
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.70-77
    • /
    • 2008
  • Proteome analysis was performed to identify proteins differentially expressed in an Arabidopsis mutant, ntm1-D. In this mutant the NAC transcription factor NTM1 is constitutively expressed and the resultant phenotypic changes include dwarfism, serrated leaves, and altered floral structures, probably due to reduced cell division. Marked elevation of proteins mediating environmental stress responses, including annexin, vegetative storage proteins, beta-glucosidase homolog 1, and glutathione transferases was observed. Overexpression of annexin was confirmed by RT-PCR and Western blotting. These observations suggest that the reduced growth observed in the ntm1-D mutant is caused by enhancement of its stress responses, possibly resulting in a cost in fitness.

옵신 mutant E134Q/M257Y의 로돕신 형성과 열안정성 분석 (Rhodopsin Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134Q/M257Y)

  • 김종명
    • 생명과학회지
    • /
    • 제22권7호
    • /
    • pp.863-870
    • /
    • 2012
  • 세포막 단백질 중 가장 큰 family를 형성하는 G protein-coupled receptor (GPCR)는 세포 외부의 다양한 신호를 세포 내 G 단백질의 활성화를 통하여 전달한다. 외부 신호자극이 없는 조건에서도 활성을 나타내는 항활성 돌연변이(constitutively active mutants, CAM)는 GPCR 신호전달 이상으로 인한 질병 치료나 GPCR의 활성화 구조연구에 좋은 대상이다. 본 연구는 시각수용체 로돕신에서 약한 항활성을 보이는 CAM의 하나인 E134Q/M257Y를 대상으로, inverse agonist와 agonist 존재 하에서 형성하는 두 가지 chromophore의 특성을 연구하였다. 이 CAM은 11-cis-retinal과 all-trans-retinal 존재 하에서 각기 최대흡광도가 500 nm와 380 nm인 로돕신을 형성한다. 두 가지 retinal을 다양한 비로 혼합한 조건과 연속적으로 결합하는 조건 하에서 각 형태의 로돕신 형성을 조사한 결과 E134Q/M257Y mutant는 11-cis-retinal과 우선적으로 결합함을 보여준다. E134Q/M257Y mutant는 wild type 옵신에 비해 11-cis-retinal에 대한 친화도는 별다른 차이가 없으나 옵신과 로돕신 상태의 안정성이 낮음이 확인되었다. 본 연구 결과는 GPCR의 활성화 시 일어나는 부분적 구조변화에 대한 정보를 제공하고, 구조정보에 기반한 GPCR신호를 미세하게 조절하는 물질의 발굴이나 개발에 유용하게 이용될 것이다.

Analysis of the Stoichiometry and the Domain for Interaction of Simian Virus 40 Small-t Antigen with Protein Phosphatase 2A

  • Yang, Sung-Il;Mumby, Marc C.
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.331-335
    • /
    • 1995
  • Simian virus 40 (SV40) small-t antigen (small-t) has been known to regulate the activity of a cellular enzyme, protein phosphatase 2A (PP2A), composed of A. B, and C subunits, via binding to the A subunit In the study presented here, the stoichiometry of the binding of small-t to PP2A was determined to be 1: 1. It was also shown that small-t binds to the AC form of PP2A with a higher apparent affinity than it binds to the free A subunit. We also characterized the interaction of PP2A with wild-type and various mutant small-ts. A single-point mutant (Val134Met) and a double-point mutant (Trp147Gly;Leu152 Pro) of small-t exhibited 3-fold and 5-fold lower potencies in inhibiting PP2A activity. respectively. This suggests that the region around amino acids between 134 and 152 of small-t might be important in regulating the enzyme activity of PP2A.

  • PDF

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • 대한의생명과학회지
    • /
    • 제11권4호
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Abscisic Acid Binding to Extracts from Normal and Viviparous-1 Mutant Aleurone Layers of Zea mays L.

  • Bai, Dong-Gyu
    • Journal of Plant Biology
    • /
    • 제37권2호
    • /
    • pp.151-158
    • /
    • 1994
  • Aleurone layers of normal and vp1 mutant maize kernels were extracted and centrifuged at 100,000g to yield a cytosol fraction. Binding of [3H]ABA cis, trans (+)ABA to a soluble macromolecular components present in the cytosol was demonstrated by Sephadex chromatography and non-denaturing PAGE. The binding component was of high molecular weight and seems to be an aggregate of proteins. A rapid DEAE-cellulose filter method for assaying bound [3H]ABA to a soluble protein was adapted. Binding assays were performed with cytosol that had been preheated or incubated with several enzymes, indicating that heat and protease treatments disrupted the binding. This suggested that binding occurred to proteins. Some properties of the ABA binding proteins were described. The [3H]ABA binding were reduced dramatically when unlabeled ABA was added as a competitor, suggesting a specific binding of [3H]ABA. Gel filtration profiles and autoradiogram of [3H]ABA binding showed no difference in the binding components of Vp1 and vp1/vp1 mutant cytosol, indicating that Vp1 protein is not a sole ABA binding protein.

  • PDF

OsDOR1, a novel glycine rich protein that regulates rice seed dormancy

  • Kim, Suyeon;Huh, Sun Mi;Han, Hay Ju;Cho, Mi Hyun;Lee, Gang Sub;Kim, Beom Gi;Kwon, Taek Yun;Yoon, In Sun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.90-90
    • /
    • 2017
  • Regulation of seed dormancy is important in many grains to prevent pre-harvest sprouting. To identify and understand the gene related to seed dormancy regulation, we have screened for viviparous phenotypes of rice mutant lines generated by insertion of Ds transposon in a Korean Japonica cultivar (Dongjin) background. One of the mutants, which represented viviparous phenotype, was selected for further seed dormancy regulation studies and designated dor1. The dor1 mutant has single Ds insertion in the second exon of OsDor1 gene encoding glycine-rich protein. The seeds of dor1 mutant showed a higher germination potential and reduced abscisic acid (ABA) sensitivity compared to wild type Dongjin. Over-expression of Dor1 complements the viviparous phenotype of dor1 mutant, indicating that Dor1 function in seed dormancy regulation. Subcellular localization assay of Dor1-GFP fusion protein revealed that the OsDor1 protein mainly localized to membrane and the localization of OsDOR1 was influenced by presence of a giberelin (GA) receptor OsGID1. Further bimolecular fluorescence complementation (BiFC) analysis indicated that OsDOR1 interact with OsGID1. The combined results suggested that OsDOR1 regulates seed dormancy by interacting with OsGID1 in GA response. Additionally, expression of OsDOR1 partially complemented the cold sensitivity of Escherichia coli BX04 mutant lacking four cold shock proteins, indicating that OsDOR1 possessed RNA chaperone activity.

  • PDF

Agronomic characteristics of stay-green mutant derived from an early-maturing rice variety 'Pyeongwon'

  • Won, Yong-Jae;Ji, Hyeon-So;Ahn, Eok-Keun;Lee, Jeong-Heui;Jung, Kuk-Hyun;Lee, Sang-Bok;Hong, Ha-Cheol;Hyun, Ung-Jo;Ha, Woon-Goo;Kim, Myeong-Ki;Kim, Byeong-Ju
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.72-72
    • /
    • 2017
  • We found a new stay-green mutant from 'Pyeongwon' which is an early-maturing rice variety in Korea. The mutant showed green leaves after grain ripening period and it maintained higher SPAD value than wild type rice plant and original variety 'Pyeongwon'. The stay-green trait in rice, three genes have been identified up to date. The non-yellow coloring1 (NYC1) gene encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The non-yellow coloring3 (NYC3) gene encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The Sgr gene encodes a novel chloroplast protein and regulates the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of chlorophylls and LHCPs during senescence. After sequencing the PCR products, we found a single nucleotide variation($A{\rightarrow}T$) in the NYC1 gene, which changes the amino acid lysine to methionine. The NYC1 gene encodes a short-chain dehydrogenase/reductase(SDR) protein. And we confirmed the co-segregation between SNP and stay-green trait from genotyping the progenies of the mutant.

  • PDF

C-terminally mutated tubby protein accumulates in aggresomes

  • Kim, Sunshin;Sung, Ho Jin;Lee, Ji Won;Kim, Yun Hee;Oh, Yong-Seok;Yoon, Kyong-Ah;Heo, Kyun;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.37-42
    • /
    • 2017
  • The tubby protein (Tub), a putative transcription factor, plays important roles in the maintenance and function of neuronal cells. A splicing defect-causing mutation in the 3'-end of the tubby gene, which is predicted to disrupt the carboxy-terminal region of the Tub protein, causes maturity-onset obesity, blindness, and deafness in mice. Although this pathological Tub mutation leads to a loss of function, the precise mechanism has not yet been investigated. Here, we found that the mutant Tub proteins were mostly localized to puncta found in the perinuclear region and that the C-terminus was important for its solubility. Immunocytochemical analysis revealed that puncta of mutant Tub co-localized with the aggresome. Moreover, whereas wild-type Tub was translocated to the nucleus by extracellular signaling, the mutant forms failed to undergo such translocation. Taken together, our results suggest that the malfunctions of the Tub mutant are caused by its misfolding and subsequent localization to aggresomes.

DNA 벤딩(휨) 없이 돌연변이 cAMP 수용체 단백질의 결합 (Mutant cAMP Receptor Protein Binds to DNA without DNA Bending)

  • 강종백
    • 생명과학회지
    • /
    • 제16권7호
    • /
    • pp.1225-1228
    • /
    • 2006
  • cAMP와 복합체를 형성한 cAMP 수용성 단백질은 DNA와 결합하여 ${\sim}90$도 정도의 예리한 DNA bending을 유도한다. 그러나 이전의 논문[5]에 의하면 돌연변이 CRP:cGMP 복합체는 돌연변이 CRP:cAMP 복합체보다 아크릴아미드 겔에서 상대적으로 빠른 이동속도를 보였다. CRP와 cyclic nucleotide 존재하에서 DNA의 구조 변화를 알아보기 위하여 6가지 준비된 DNA조각들을 사용하여 몰 고리화 인자(molar cyclization factor)[13]를 측정하였다. 이들 자료를 사용하여 nonlinear regression analysis를 통하여 cGMP 존재하에서 돌연변이 CRP는 DNA bending을 형성하지 않으나 CAMP 존재하에서 나선 꼬임과 같은 DNA 구조 변화없이 DNA bending을 형성한다.