• 제목/요약/키워드: mutant mice

검색결과 152건 처리시간 0.032초

Next-generation gene targeting in the mouse for functional genomics

  • Gondo, Yoichi;Fukumura, Ryutaro;Murata, Takuya;Makino, Shigeru
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.315-323
    • /
    • 2009
  • In order to elucidate ultimate biological function of the genome, the model animal system carrying mutations is indispensable. Recently, large-scale mutagenesis projects have been launched in various species. Especially, the mouse is considered to be an ideal model to human because it is a mammalian species accompanied with well-established genetic as well as embryonic technologies. In 1990', large-scale mouse mutagenesis projects firstly initiated with a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU) by the phenotype-driven approach or forward genetics. The knockout mouse mutagenesis projects with trapping/conditional mutagenesis have then followed as Phase II since 2006 by the gene-driven approach or reverse genetics. Recently, the next-generation gene targeting system has also become available to the research community, which allows us to establish and analyze mutant mice carrying an allelic series of base substitutions in target genes as another reverse genetics. Overall trends in the large-scale mouse mutagenesis will be reviewed in this article particularly focusing on the new advancement of the next-generation gene targeting system. The drastic expansion of the mutant mouse resources altogether will enhance the systematic understanding of the life. The construction of the mutant mouse resources developed by the forward and reverse genetic mutagenesis is just the beginning of the annotation of mammalian genome. They provide basic infrastructure to understand the molecular mechanism of the gene and genome and will contribute to not only basic researches but also applied sciences such as human disease modelling, genomic medicine and personalized medicine.

New Roles of Glucose-Specific Enzyme IIA of the Vibrio vulnificus Phosphoransferase System

  • Kim, You-Jin;Koo, Byoung-Mo;Ryu, Yang-Kyun;Park, Soon-Jung;Lee, Kyu-Ho;Seok, Yeong-Jae
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2006년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.29-31
    • /
    • 2006
  • In a previous report, we showed that enzyme $IIA^{Glc}(EIIA^{Glc}$ of Escherichia coli phosphotransferase system (PTS) interacts with and regulates activity of FrsA (fermentation/respiration switch protein). A BLAST search revealed that orthologs of FrsA exist only in some Gram-negative bacteria such as E. coli, Salmonella typhimurium, Shigella flexneri, Yersinia pestis, Vibrio cholerae, Vibrio vulnificus, Vibrio parahemeolyticus, and Photorhabdus luminescens and all of these species are facultative anaerobes belonging to the ${\gamma}-proteobacterial$ group, and most of them are highly pathogenic. Ligand-fishing experiments using $EIIA^{Glc}$ of Vibrio vulnificus ($vEIIA^{Glc}$) as bait revealed that $vEIIA^{Glc}$ also interacts with vFrsA in a phosphorylation state-dependent manner. The frsA mutant of Vibrio vulnificus showed remarkably reduced cytotoxicity to HeLa cells and reduced lethality to mice compared to wild type. Comparison of extracellular proteomes between the mutant and wild type indicated that hemolysin was not produced in the frsA mutant. Characterization of another protein interacting with $vEIIA^{Glc}$ will be discussed.

  • PDF

A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease

  • Endan Li;Jiwoo Choi;Hye-Ri Sim;Jiyeon Kim;Jae Hyun Jun;Jangbeen Kyung;Nina Ha;Semi Kim;Keun Ho Ryu;Seung Soo Chung;Hyun Sook Kim;Sungsu Lee;Wongi Seol;Jihwan Song
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.178-183
    • /
    • 2023
  • Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD.

Astaxanthin 함유 기능성 식품소재의 유전독성 및 항산화능 검사 (Genotoxicity and Anti-Oxidative Effectiveness Study of Functional Food Additive Containing Astaxanthin)

  • 김준성;박진홍;김화;조현선;황순경;나운성;강환구;안길환;조명행
    • Toxicological Research
    • /
    • 제22권4호
    • /
    • pp.381-390
    • /
    • 2006
  • Astaxanthine is a pigment that belongs to the family of the xanthophylls, the oxygenated derivatives of carotenoids whose synthesis in plants derives from lycopene. Astaxanthine is also a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that. Recent study reported that astaxanthine has the role as a detoxicant against the free radicals. On our study, we estimated the genotoxicity in ICR mice and possibility as antioxidant reagents of mutant Phaffia rhodozyma strain over expressing the astaxanthine by gamma-lay and carophyll pink including astaxanthine in apoE knock out mice, respectively. In our study, we administered Phaffia rhodozyma (2 mg and 3 mg) and carophyll pink for 4 and 8 week. The clinical sign and mortality were not detected compared with control groups. In the mutant frequency of hprt gene and chromosome aberration in splenic cells, there was not detected abnormality. There was not critical change in hematological and serum biochemical test compared to control. In expression level of repair enzyme, increase of catalase were detected and increase of expression level of Nrf-2 was detected in Phaffia rhodozyma (3 mg) and carophyll pink in 8 week treated group. In GSH level, the group of treated with Phaffia rhodozyma (3 mg) showed the increase of the GSH. In conclusion, mutant Phaffia rhodozyma and caphyll pink may be applied to the effective food additives to reduce the free radical.

CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis

  • Nam, Dae-Hwan;Han, Jung-Hwa;Lim, Jae Hyang;Park, Kwon Moo;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.457-465
    • /
    • 2017
  • Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic ${\beta}$-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that ERK5 (Extracellular-signal-regulated kinase 5) contributes to the pathogeneses of diabetic complications. This study was undertaken to explore the mechanism whereby ERK5 inhibition instigates pancreatic ${\beta}$-cell apoptosis via an ER stress-dependent signaling pathway. STZ-induced diabetic WT and CHOP deficient mice were i.p. injected every 2 days for 6 days under BIX02189 (a specific ERK5 inhibitor) treatment in order to evaluate the role of ERK5. Hyperglycemia was exacerbated by co-treating C57BL/6J mice with STZ and BIX02189 as compared with mice administered with STZ alone. In addition, immunoblotting data revealed that ERK5 inhibition activated the unfolded protein response pathway accompanying apoptotic events, such as, PARP-1 and caspase-3 cleavage. Interestingly, ERK5 inhibition-induced exacerbation of pancreatic ${\beta}$-cell apoptosis was inhibited in CHOP deficient mice. Moreover, transduction of adenovirus encoding an active mutant form of $MEK5{\alpha}$, an upstream kinase of ERK5, inhibited STZ-induced unfolded protein responses and ${\beta}$-cell apoptosis. These results suggest that ERK5 protects against STZ-induced pancreatic ${\beta}$-cell apoptosis and hyperglycemia by interrupting the ER stress-mediated apoptotic pathway.

Contribution of HSP90 Cleavage to the Cytotoxic Effect of Suberoylanilide Hydroxamic Acid In Vivo and the Involvement of TXNIP in HSP90 Cleavage

  • Sangkyu Park;Dongbum Kim;Haiyoung Jung;In Pyo Choi;Hyung-Joo Kwon;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.115-122
    • /
    • 2024
  • Heat shock protein (HSP) 90 is expressed in most living organisms, and several client proteins of HSP90 are necessary for cancer cell survival and growth. Previously, we found that HSP90 was cleaved by histone deacetylase (HDAC) inhibitors and proteasome inhibitors, and the cleavage of HSP90 contributes to their cytotoxicity in K562 leukemia cells. In this study, we first established mouse xenograft models with K562 cells expressing the wild-type or cleavage-resistant mutant HSP90β and found that the suppression of tumor growth by the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was interrupted by the mutation inhibiting the HSP90 cleavage in vivo. Next, we investigated the possible function of thioredoxin interacting protein (TXNIP) in the HSP90 cleavage induced by SAHA. TXNIP is a negative regulator for thioredoxin, an antioxidant protein. SAHA transcriptionally induced the expression of TXNIP in K562 cells. HSP90 cleavage was induced by SAHA also in the thymocytes of normal mice and suppressed by an anti-oxidant and pan-caspase inhibitor. When the thymocytes from the TXNIP knockout mice and their wild-type littermate control mice were treated with SAHA, the HSP90 cleavage was detected in the thymocytes of the littermate controls but suppressed in those of the TXNIP knockout mice suggesting the requirement of TXNIP for HSP90 cleavage. We additionally found that HSP90 cleavage was induced by actinomycin D, β-mercaptoethanol, and p38 MAPK inhibitor PD169316 suggesting its prevalence. Taken together, we suggest that HSP90 cleavage occurs also in vivo and contributes to the anti-cancer activity of various drugs in a TXNIP-dependent manner.

Accelerated DNA Adduct Formation in the Lung of the Nrf2 Knockout Mouse Exposed to Diesel Exhaust

  • Aoki, Yasunobu;Sato, Hiromi;Nishimura, Noriko;Takahashi, Satoru;Itoh, Ken;Yamamoto, Masayuki
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.36-42
    • /
    • 2002
  • Diesel exhaust (DE) has been recognized as a noxious mutagen and/or carcinogen, because its components can form DNA adducts. Mechanisms governing the susceptibility to DE and the efficiency of such DNA adduct formation require clarification. The transcription factor Nrf2 is essential for inducible and/or constitutive expression of a group of detoxification and antioxidant enzymes, and we hypothesized that the nrf2 gene knockout mouse might serve as an excellent model system for analyzing DE toxicity. To address this hypothesis, lungs from nrf2(-/-) and nrf2(+/-) mice were examined for the production of xenobiotic-DNA adducts after exposure to DE (3 $mg/m^{3}$ suspended particulate matter) for 4 weeks. Whereas the relative adduct levels (RAL) were significantly increased in the lungs of both nrf2(+/-) and nrf2(-/-) mice upon exposure to DE, the increase of RAL in the lungs from nrf2(-/-) mice exposed to DE were approximately 2.3-fold higher than that of nrf2(+/-) mite exposed to DE. In contrail, cytochrome P4501Al mRNA levels in the nrf2(-/-)mouse lungs were similar to those in the nrf2(+/-) mouse lungs even after exposure to DE, suggesting that suppressed activity of phase II drug-metabolizing enzymes is important in giving ise to the increased level of DNA adducts in the Nrf2-null mutant mouse subjected to DE. Importantly, severe hyperplasia and accumulation of the oxidative DNA adduct 8-hydroxydeoxyguanosine were observed in the bronchial epidermis of nrf(-/-) mite following DE exposure. These results demonstrate the increased susceptibility of the nrf2 germ line mutant mouse to DE exposure and indicate the nrf2 gene knockout mouse nay represent a valuable model for the assessment of respiratory DE toxicity.

  • PDF

Identification of Potential Carcinogenic Biomarker Following Exposure to N-ethyl-N-nitrosourea in Mice

  • Lim, Jung-Sun;Jeong, Sung-Young;Hwang, Ji-Yoon;Cho, Kyu-Hyuk;Cho, Jae-Woo;Han, Sang-Seop;Song, Chang-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.106-110
    • /
    • 2005
  • N-ethyl-N-nitrosourea (ENU), which is a toxin and a carcinogen, as well as a mutagen, has a variety of effects on mice. ENU induces point mutation in male germ cell. Number of mutant animals are developed with ENU treatment. However, potentiality ot ENU as a carcinogen is not fully understood, even though, mutagenicity of ENU is broadly studied, In the present study, the gene expression profiling and histopathological investigation of ENU treated mouse's liver and brain were investigated. Also, the expression patterns of cancer related genes in ENU-treated mouse were analyzed.

Cytoprotection Against Oxidative Damage by Nrf2-regulated Genes

  • Kwak, Mi-Kyoung;Kensler, Thomas W.
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.207-214
    • /
    • 2007
  • Chronic oxidative stress produced by exposure to environmental chemicals or pathophysiological states can lead animals to aging, carcinogenesis and degenerative diseases. Indirect antioxidative mechanisms, in which natural or synthetic agents are used to coordinately induce the expression of cellular antioxidant capacity, have been shown to protect cells and organisms from oxidative damages. Electrophile and free radical detoxifying enzymes, which were originally identified as the products of genes induced by cancer chemopreventive agents, are members of this protective system. The NFE2 family transcription factor Nrf2 was found to govern expression of these detoxifying enzymes, and screening for Nrf2-regulated genes has identified many gene categories involved in maintaining cellular redox potential and protection from oxidative damage as Nrf2 downstream genes. Further, studies using Nrf2-deficient mice revealed that these mutant mice showed more susceptible phenotypes towards exposure to environmental chemicals/carcinogens and in oxidative stress related disease models. With the finding that cancer chemopreventive efficacy of indirect antioxidants (enzyme inducers) is lost in the absence of Nrf2, a central role of Nrf2 in the antioxidative protective system has been firmly established. Promising results from cancer prevention clinical trials using enzyme inducers propose that pharmacological interventions that modulate Nrf2 can be an effective strategy to protect tissues from oxidative damage.

Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity

  • Joh, Yechan;Choi, Won-Seok
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.417-424
    • /
    • 2017
  • Alzheimer's disease (AD) is neurodegenerative disease, characterized by the progressive decline of memory, cognitive functions, and changes in personality. The major pathological features in postmortem brains are neurofibrillary tangles and amyloid beta ($A{\beta}$) deposits. The majority of AD cases are sporadic and age-related. Although AD pathogenesis has not been established, aging and declining mitochondrial function has been associated. Mitochondrial dysfunction has been observed in AD patients' brains and AD mice models, and the mice with a genetic defect in mitochondrial complex I showed enhanced $A{\beta}$ level in vivo. To elucidate the role of mitochondrial complex I in AD, we used SH-SY5Y cells transfected with DNA constructs expressing human amyloid precursor protein (APP) or human Swedish APP mutant (APP-swe). The expression of APP-swe increased the level of $A{\beta}$ protein in comparison with control. When complex I was inhibited by rotenone, the increase of ROS level was remarkably higher in the cells overexpressing APP-swe compared to control. The number of dead cell was significantly increased in APP-swe-expressing cells by complex I inhibition. We suggest that complex I dysfunction accelerate amyloid toxicity and mitochondrial complex I dysfunction in aging may contribute to the pathogenesis of sporadic AD.