• Title/Summary/Keyword: muscle protein synthesis

Search Result 105, Processing Time 0.026 seconds

Regulation of skeletal muscle protein synthesis by amino acid and resistance exercise

  • Nakai, Naoya
    • Korean Journal of Exercise Nutrition
    • /
    • v.15 no.4
    • /
    • pp.153-161
    • /
    • 2011
  • The maintenance of skeletal muscle mass is very important for the prevention of life style-related diseases and the improvement of quality of life. It is well-known that resistance exercise and nutrition (especially amino acids) are the most effective interventions for maintaining skeletal muscle mass. It has been reported that many molecules are involved in the regulation of protein synthesis in response to resistance exercise and nutrition. Understanding the molecular mechanisms regulating muscle protein synthesis is crucial for the development of appropriate interventions. The role of intracellular signaling pathways through the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase in the regulation of muscle protein synthesis, has been extensively investigated for these years. Control of protein synthesis by mTOR is mediated through phosphorylation of downstream targets that modulate translation initiation and elongation step. In contrast, upstream mediators regulating mTOR and protein synthesis in response to resistance exercise and amino acid still needed to be determined. In this brief review, we discuss the current progress of intracellular mechanisms for exercise- and amino acid-induced activation of mTOR pathways and protein synthesis in skeletal muscle.

MUSCLE PROTEIN SYNTHESIS IN VITRO IN CHICKS FED A LOW-PROTEIN DIET

  • Kita, K.;Kuzuya, Y.;Matsunami, S.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.171-174
    • /
    • 1996
  • Muscle protein synthesis in vitro was measured in chicks fed low-protein(10% CP) and control(20% CP) diets. Right leg muscles (M. gastrocnemius) were mounted on a support made of stainless steel to stretch in constant tension, whereas left leg muscles were unmounted. Both leg muscles were incubated in Dulbecco's modified Eagle's medium including L-[$4-^3H$] phenylalanine for 60 min to measure in vitro protein synthesis. There was no significant difference in fractional synthesis rate(FSR) of muscle protein between both dietary protein levels, whereas FSR with stretch in constant tension was significantly higher than that without constant tension due to an increase in the absolute synthesis rate(ASR) per unit RNA(the efficiency of RNA to synthesize protein). The ASR of muscle protein in chicks fed the control diet was significantly higher than that in the low-protein diet group.

Inhibition of Corticosterone-induced Muscle Protein Synthesis by the Anabolic Steroid Nandrolone Phenylpropionate in Female Rats (아나보릭스테로이드인 Nandrolone Phenylpropionate가 암컷 쥐에서 코티코스테론에 의해 야기된 근육단백질 쇠퇴와 근육단백질 합성율 감소에 미치는 영향)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.867-873
    • /
    • 1996
  • This study was undertaken to determine whether the anabolic steroid nandrolone phenylpropionate(NPP) can inhibit the muscle atrophy and reduction in muscle protein synthesis caused by glucocorticoids in female rates. Daily injections of 50mg/kg of corticosterone for eight days induced significant reductions in body weight gain and protein without affecting food intake. The mass, protein and RNA content, ratio of RNA to protein, and fractional rate of protein synthesis, measured in vivo, of gastrocnemius muscle were all significantly reduced by corticosterone treatement. Simultaneous administration of NPP at a dose of 10mg/kg with corticosteorne (50mg/kg) fully inhibited the reductions in the mass, protein and RNA content of gastrocnemius muscle, and body weight gain and protein with no alteration in food intake but the reduction in fractional rate of muscle protein syntheis was only partially prevented. The results indicate that the anabolic steroid nandrolone phenylpropionate is capable of preventing muscle atrophy in female rats treated with excess corticosterion.

  • PDF

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Effects of the Protein Fraction of Panax ginseng on Primary Cultured Chicken Skeletal Muscle Cells (인삼 단백분획물이 일차배양한 계배의 근육세포에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Lee, Heun-Pa;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.3
    • /
    • pp.210-216
    • /
    • 1990
  • Effects of the protein fraction of Panax ginseng on chicken embryonic skeletal muscle cells cultured with a decfiient medium were studied. The protein fraction was further fractionated into four groups according to the molecular weight; larger than 10,000 dalton(fraction A), between 5,000 and 10,000 dalton(fraction B), between 1,000 and 5,000 dalton(fraction C), between 500 and 1,000 dalton(fraction D). According to the microscopic observation, all four protein fractions at the concentration of $10{\sim}100{\;}{\mu}g/ml$ showed the tendency to stimulate the growth and differentiation of the muscle cells. The activity of acetylcholinesterase in muscle cells was significantly elevated by the protein fraction A at the concentration of $100{\mu}{\;}g/ml$. Protein fractions B,C and D significantly enhanced the synthesis of RNA in the muscle cells. The synthesis of DNA in muscle cells was significantly enhanced by protein fractions A,B and C.

  • PDF

Activation of Signaling Pathways for Protein Synthesis by Korean Mistletoe (Viscum album coloratum) Extract in a Mouse Model of Muscle Atrophy (근위축 마우스 모델에서 한국산 겨우살이 추출물에 의한 단백질 합성 신호전달 경로의 활성화)

  • Jeong, Juseong;Park, Choon-Ho;Kim, Inbo;Kim, Jong-Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.371-377
    • /
    • 2017
  • Muscle atrophy is characterized by a decrease in the mass of the muscle. With an increase in life expectancy and chronic illnesses, the incidence of muscle atrophy is increasing and the quality of life of patients is decreasing. Thus, reducing muscle atrophy is of high clinical and socio-economic importance. Mistletoe is a semi-parasitic plant that has been used as a traditional medicine in many countries to treat various human illnesses. It has been reported that Korean mistletoe extract (KME) has diverse biological functions including anti-tumor, anti-oxidant, anti-diabetic, anti-obesity properties, and extension of lifespan. Especially, we have recently reported that KME improves exercise endurance in mice, indicating its beneficial roles in enhancing the capacity of skeletal muscle. In this study, we investigated whether KME could activate the signaling pathway related to protein synthesis in a mouse model of muscle atrophy. Interestingly, KME efficiently activated the Akt/mTOR pathway, and Akt and mTOR are important signaling hub molecules for the acceleration of protein synthesis in muscle cells. In addition, KME also increased the activity of S6 kinase which is involved in the regulation of muscle cell size. Moreover, the ERK activity, required for transcription of ribosomal RNA for protein synthesis, was also enhanced in KME-treated mouse muscle. These data support the idea that KME increases muscle mass via increased protein synthesis. Our findings also suggest that Korean mistletoe might be a promising candidate for the development of functional foods that are beneficial for preventing muscle atrophy.

Response of Muscle Protein Synthesis to the Infusion of Insulin-like Growth Factor-I and Fasting in Young Chickens

  • Kita, K.;Shibata, T.;Aman Yaman, M.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1760-1764
    • /
    • 2002
  • In order to elucidate the physiological function of circulating IGF-I on muscle protein synthesis in the chicken under malnutritional conditions, we administrated recombinant chicken IGF-I using a osmotic mini pump to fasted young chickens and measured the rate of muscle protein synthesis and plasma metabolite. The pumps delivered IGF-I at the rate of $22{\mu}g/d\{300{\mu}g{\cdot}(kg\;body\;weight{\cdot}d)^{-1}\}$. Fractional rate of protein synthesis in the muscle was measured using a large dose injection of L-[$2,6-^3H$]phenylalanine. Constant infusion of chicken IGF-I did not affect plasma glucose level. Significant interaction between dietary treatment and IGF-I infusion was observed in plasma NEFA and total cholesterol concentrations. When chicks were fasted, IGF-I infusion decreased plasma NEFA and total cholesterol concentrations. On the other hand, IGF-I administration did not affect plasma levels of both metabolites. Fasting reduced plasma triglyceride concentration significantly. IGF-I infusion also decreased the level of plasma triglyceride. Plasma IGF-I concentration of young chickens was halved by fasting for 1 d. IGF-I infusion using an osmotic minipump for 1 d increased plasma IGF-I concentration in fasted chicks to the level of fed chicks. Fasting decreased body weight and the loss of body weight was significantly ameliorated by IGF-I infusion. There was a significant interaction between dietary treatment and IGF-I infusion in the fractional rate of breast muscle protein synthesis. There was no effect of IGF-I infusion on muscle protein synthesis in fed chicks. Muscle protein synthesis reduced by fasting was ameliorated by IGF-I infusion, but did not reach to the level of fed control. Muscle weight of fasted chicks infused with IGF-I was similar to fasted birds without IGF-I infusion, which suggests that muscle protein degradation would be increased by IGF-I infusion as well as protein synthesis in fasted chicks.

Influence of Refeeding with Vitamin, Mineral and Fibre on Protein Synthesis and Messenger Ribonucleic Acid Content in the Liver and Muscle of Fasted Chicks

  • Aman Yaman, M.;Kita, K.;Pinontoan, R.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.545-549
    • /
    • 1998
  • The influence of refeeding with either vitamin, mineral, fibre of water on protein synthesis and mRNA content in the liver and breast muscle of fasted chicks was investigated. At 15 d of age, chicks were fasted for 2 d and then refed either vitamin, mineral, fibre or water. The fractional synthesis rate (FSR) of protein was measured after 30 min of refeeding by using a large dose injection of L - 2, $6[^3H]$ phenylalanine. In the liver, FSR was reduced by fasting and tended to increase but not significantly by refeeding with vitamin or mineral. FSR was not affected by refeeding with fibre or water. There was no influence of fasting and refeeding on ribosomal capacity (the RNA : protein ratio) and ribosomal efficiency (total protein synthesised per total RNA). The absolute synthesis rate (ASR) of liver protein and hepatic mRNA content were reduced by fasting and unchanged by refeeding. In the muscle, FSR, ASR and mRNA content were significantly decreased by fasting and not recovered by refeeding with either vitamin, mineral, fibre or water. It concluded that vitamin, mineral, fibre and water have little capacity to stimulate liver and muscle protein synthesis reduced by fasting.

Review on Exercise Training and Protein Intake in Skeletal Muscle Protein Metabolism (운동훈련과 단백질 섭취에 따른 골격근 단백질 대사: 안정성 동위원소 추적체법을 이용한 연구결과를 중심으로)

  • Shin, Yun-A;Kim, Il-Young
    • Exercise Science
    • /
    • v.26 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • INTRODUCTION: Regulation of skeletal muscle protein mass is implicated not only in exercise performance but in metabolic health. Exercise in combination with nutrition, particularly dietary protein/amino acid intake, are the pragmatic approach that effectively induces muscle anabolic response (i.e., muscle hypertrophy) through regulating protein synthesis and breakdown. PURPOSE: The purpose of this review was to summarize available data on the effect of exercise intervention and amino acids intake on muscle protein synthesis and breakdown and provide an insight into development of an effective exercise intervention and amino acids supplements, applicable to training practice. METHODS: In this review, we have reviewed currently available data mainly from stable isotope tracer studies with respect to the effect of exercise intervention and protein or amino acid supplement on muscle protein anabolic response. CONCLUSIONS: Taken together, exercise alone may not be effective in achieving a positive net muscle protein balance due to the fact that protein breakdown still exceeds protein synthesis until nutrition intake such as protein/amino acids. It appears that muscle anabolic response increases in proportional to the amount of protein intake up to 20 - 35 g depending on quality of protein, age, differences on exercise intensity, duration, and frequency, and individual's training status

Effects of the Anabolic Steroid, Nandrolone Pheylpropionate, on Growth and Muscle Protein Metabolism in ACTH-treated Rats (ACTH를 투여한 흰쥐에서 아나보릭스테로이드인 Nandrolone Phenylpropionate가 성장한 근육단백질 대사에 미치는 영향)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.874-880
    • /
    • 1996
  • The effects of an anabolic steroid, nandrolone phenylpropionate(NPP), on body weight gain and body protein, and muscle protein metabolism were inestigated in adrenocorticotrophic hormone(ACTH)-treated male and female rats. Daily injections of 100ug/day of ACTH for 7-8 days caused a cessation of growth in females and a net loss of body weight in males which were associated with significant reductions in body protein content. However, food intake was not affected by ACTH in either sex. The weight, protein content and fractional rate of protein synthesis, measured in vivo, of gastrocnemius muscle were all significantly reduced in both sexes. NPP at a dose of 4mg/kg body weight prevented the reduction in body weight gain in ACTH-treate females but not in males. However, boy protein content was increased by NPP in both sexes which was associated with increases in the weight, protein content and fractional rate of protein synthesis of gastrocnemius muscle. ACTH treatment caused a marked increase in plasma concentrations of corticosterone in both sexes. NPP suppressed much of the increases in corticosterone concentrations in both sexes. The results of the present study suggest that NPP exerts at least part of its anabolic effect by reducing plasma concentrations of catabolic glucocorticoid hormones, through suppressing the response of the adrenals to ACTH.

  • PDF