• Title/Summary/Keyword: muscle injury

Search Result 653, Processing Time 0.03 seconds

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.

The Effect of a Pulsed Electromagnetic Field with Time on Pain in Muscle Crushed Rat Model

  • Kim, Min-Hee;Cheon, Song-Hee
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.68-71
    • /
    • 2012
  • Acute injuries to skeletal muscles can lead to significant pain and disability. Muscle pain results in muscle weakness and range of motion (ROM) decreases. Pulsed electromagnetic fields (PEMF) promote tissue repair, healing rates and reduce musculoskeletal pain. The results of many previous studies suggest that PEMF can contribute to chronic pain reduction, particularly in musculoskeletal injurys. However, we do not have enough information of its effects compared to a placebo. The principal objective of this study was to investigate differences in acute pain induced by the direct destruction of muscle tissue (extensor digitorum) with varying times of the application of PEMF, measured through the expression of c-fos on the spinal cord. Significant reduction of pain was found in groups exposed to PEMF and the group exposed to PEMF immediately after muscle injury showed the most significant differences. In conclusion, PEMF may be a useful strategy in reducing acute pain in muscle injury.

Effects of Unilateral Sciatic Nerve Injury on Unaffected Hindlimb Muscles of Rats (일측성 좌골신경손상이 쥐의 정상측 뒷다리근에 미치는 영향)

  • Kim, Jin-Il;Choe, Myoung-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.39 no.3
    • /
    • pp.393-400
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effects of unilateral sciatic nerve injury on unaffected hindlimb muscles of rats. Methods: Adult male Sprague-Dawley rats were assigned to one of three groups: control(C) group(n=10) that had no procedures, sham(S) group(n=10) that underwent sham left sciatic nerve transection, and sciatic nerve transection(SNT) group(n=9) that underwent left sciatic nerve transection. At 15 days rats were anesthetized, and the soleus, plantaris and gastrocnemius muscles were dissected. Results: Muscle weight of the unaffected plantaris muscle in the SNT group was significantly lower than in the other two groups. Type II fiber cross-sectional areas of the unaffected plantaris and gastrocnemius muscles in the SNT group were significantly smaller than in the other two groups. The decrease of muscle weights and Type I, II fiber cross-sectional areas of the unaffected three muscles in the SNT group were significantly less than that of the affected three muscles. Conclusion: Hindlimb muscle atrophy occurs in the unaffected side after unilateral sciatic nerve injury, with changes in the plantaris and gastrocnemius muscle being more apparent than changes in the soleus muscle. These results have implications for nursing care, in the need to assess degree of muscle atrophy in unaffected muscles as well as affected muscles.

The Effect of Indomethacin on the Production of Eicosanoids and Edema during Ischemia-Reperfusion Injury in Skeletal Muscle

  • Chung, Yoon-Jae;Sohn, Byung-Kyu;Hyun, Kwang-Soon;Yoo, Sang-Hee;Ryu, Hyong-Kyun;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • During reperfusion of skeletal muscle after ischemia, lipid mediators, mainly eicosanoids, are released and may have a role in the pathogenesis of reperfusion injury. To validate the role of eicosanoids in the ischemia-reperfusion induced functional deficits in skeletal muscle, we compared muscle edema and the changes of eicosanoid concentration in the rat hind limb after ischemia-reperfusion injury by application of tourniquet. After 4 hours of ischemia, reperfusion was established for 4 hours by releasing tourniquet. To assess tissue damage, edema, and wet/dry weight ratios were determined and the eicosanoid concnentrations were measured by the HPLC. The muscle edema and the release of cyclooxygenase metabolites were not induced by the ischemia itself rather they were significantly increased by reperfusion. Indomethacin treatment ameliorated limb edema and decreased the release of $6-keto-PGF_{1{\alpha}},$ thromboxane $B_2,$ and $PGE_2$ inducedby reperfusion. But the inhibitory effect of indomethacin on edema (35%) was relatively low than the inhibitory effect on release of cyclooxygenase metabolites (up to 69%) by reperfusion. These results support the view that cyclooxygenase products may play a significant role in the formation of muscle injury by ischemia-reperfusion and suggest that nonsteroidal antiinflammatory agents might be partially beneficial to the management of acute limb ischemia-reperfusion injury.

  • PDF

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..

Latissimus Dorsi Transfer in Brachial Plexus Injury for the Elbow Flexion (상완 신경총 손상후 주관절 근력 회복을 위한 광배근 전이술)

  • Han, Chung-Soo;Chung, Duke-Whan;Soh, Jae-Ho
    • Archives of Reconstructive Microsurgery
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 1998
  • The incidence of brachial plexus injury is increasing because of the development of motor vehicle but the the results of treatment was reported poor due to its complex anatomical structure and changes of function and sensory during the recovery after trauma. But the results of treatment has been improved by the recently introduced high sensitive diagnostic method that can evaluate accurately the site and extent of the injury and treatment method. Restoration of the elbow flexion is the most important goal of treatment after brachial plexus injury and nerve graft, neurotization and muscle transfer were used for methods of treatment. From December 1992 to May 1994, the author performed 6 cases of latissimus dorsi transfer at the same side for the improvement of elbow flexion in the patients of brachial plexus injury. There were 5 cases of male, one case of female and average age was 22 years old. The causes of injury were traffic accident in 3 cases, gun shot injury, falldown and birth injury in each one case and in all cases, the type of injury were upper arm type. The average follow up period were 1 year 5 months ranging from 12 months to 4 years 5 months. In all cases, active elbow flexion was impossible before operation and average muscle power was grade I. We analysed the active range of motion, muscle power and the functional results. At the last follow up, range of active elbow flexion was average $124^{\circ}$ and flexion contracture was average 11 degrees and the average of muscle power was grade IV. In the functional analysis, there were two cases of excellent, three cases of good and 1 case of fair. There was no complications including wound infection, vascular compromise and donor site problem. The results of latissimus dorsi transfer for improvement elbow flexion in the patients of brachial plexus injury is one of the useful mettled for the restoration of elbow flexion.

  • PDF

Pulsed Electromagnetic Fields to Influence Pain and Muscle Healing Following Muscle Injury in Rats

  • Koo, Hyun-Mo;Na, Sang-Su;Yong, Min-Sik
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.377-380
    • /
    • 2015
  • Muscle contusion has a negative effect on muscle function. Although several studies showed that pain control and muscle recovery is facilitated by pulsed electromagnetic fields (PEMF), there has not been much research regarding the specific effects of PEMF on them. The aim of the present study is to investigate effects of PEMF on pain and muscle recovery following extensor digitorum longus (EDL) contusion injury through measuring the expression of the c-fos proto-oncogene and nerve growth factor (NGF). Significantly reduced c-fos expression in the spinal cord was shown in PEMF groups compared with control (CON) groups. There was no significant difference between PEMF1 and CON1, but significantly increased NGF expression was shown in PEMF3 and PEMF5 compared with in CON groups, where the numbers in the group names are the days from contusion. In conclusion, PEMF could be used to not only reduce pain in muscle injuries by down-regulating c-fos expression in the spinal cord, but it could also influence muscle healing through increasing NGF expression in the injured muscle.

Selective iNOS Inhibition Attenuates Skeletal Muscle Reperfusion Injury (선택적 iNOS 억제에 의한 골격근 재관류 손상의 감소)

  • Park, Jong-Woong;Lee, Kwang-Suk;Kim, Sung-Kon;Park, Jung-Ho;Wang, Joon-Ho;Jeon, Woo-Joo;Lee, Jeong-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to determine the effects of selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-aminomethyl]benzyl]acetamidine (l400W) on the reperfused cremaster muscle. The extracellular superoxide dismutase knockout ($EC-SOD^{-/-}$) mice was used to make the experimental window for ischemia-reperfusion injury. The muscle was exposed to 4.5 h of ischemia followed by 90 min of reperfusion and the mice received either 3 mg/kg of 1400W or the same amount of phosphate buffered saline (PBS) subcutaneously at 10 min before the start of reperfusion. The results showed that 1400W treatment markedly improved the recovery of the vessel diameter and blood flow in the reperfused cremaster muscle compared to that of PBS group. Histological examination showed reduced edema in the interstitium and muscle fiber, and reduced nitrotyrosine formation (a marker of total peroxinitrite ($ONOO^-$) in 1400W-treated muscle compared to PBS. Our results suggest that iNOS and $ONOO^-$ products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS is perhaps via limiting cytotoxic $ONOO^-$ generation, a reaction product of nitric oxide (NO) and superoxide anion ($O_2^-$). Thus, inhibition of iNOS appears to be a good treatment strategy in reducing clinical I/R injury.

  • PDF

$^{99m}Tc$-MDP Bone Scan in the Cases of Muscle Necrosis Associated with Acute Renal Failure (급성(急性) 신부전(腎不全)이 동반(同伴)된 근양사(筋壤死)에 있어서의 $^{99m}Tc$-MDP 골주사(骨走査))

  • Moon, H.B.;Han, J.S.;Kim, S.Y.;Cho, B.Y.;Lee, J.S.;Koh, C.S.;Cho, K.S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.14 no.2
    • /
    • pp.61-66
    • /
    • 1980
  • We studied four patients with muscle necrosis associated with acute renal failure to evaluate the diagnostic value of the bone scan in this disease. The illness followed carbon monoxide poisoning in two patients, acute physical exertion in one and contaminated intramuscular injection in the other. Whole-body rectilinear bone scans using technetium 99m-methyldiphosphonate were done. In all patients, increased muscle labelling at the regions of suspected muscle injury was showed, and in one, it was after normalization of serum muscle enzyme levels. In one patient, the bone scan was rechecked 8 months later and showed no residual abnormality. Above all, the site and precise extent of muscle injury could be detected and the degree of muscle labelling seemed to correlate with the severy of muscle injury. These findings suggest that isotope scanning may be useful in the diagnosis of patients with acute muscle necrosis.

  • PDF

Histological Analysis Effect of 'Sexiang Shuhuo Jing' for after Skeletal Muscle in Rats (골격근 손상에 대한 '사향서활정(麝香舒活精)' 치료 효과에 대한 조직형태학적 관찰)

  • Kim, Jin-Hang;Song, Je-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1543-1547
    • /
    • 2006
  • The aim of this experiment was to observe and analysis clinical effect of the 'Sexiang shuhuo Jing' on histological change for 14days after skeletal muscle injury in rats. The gastrocnemius muscles of rats were damaged by electromechanical and serial cryosections of the damaged muscle were prepared at 1, 5, 10, 14 days after injury. Muscle sample of the both control and 'Sexiang Shuhuo Jing' treated group were prepared for histological analysis by optical microscope and electron microscopy. 'Sexiang Shuhuo Jing' treatment group's skeletal muscle recovery was much more faster than control group. After 5 day's 'Sexiang Shuhuo Jing' treatment group's basically recovery normal structure of muscle fiber. After 14 day's control group's damaged muscle were basically recovery structure of muscle fiber but still has some factor of pathological impression but in Sexiang Shuhuo Jing treatment group's can't be found that.