• 제목/요약/키워드: muscle fiber composition

검색결과 58건 처리시간 0.023초

Estimation of Correlation Coefficients between Histological Parameters and Carcass Traits of Pig Longissimus Dorsi Muscle

  • Ryu, Y.C.;Rhee, M.S.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.428-433
    • /
    • 2004
  • The aim of this study was to investigate the histochemical parameters of muscle fibers, and to estimate the correlation between these histological parameters and carcass traits in pigs. A total of 230 crossbred Duroc$\times$(Yorkshire$\times$Landrace) pigs (149 gilts and 81 castrated male pigs) was evaluated. Carcass traits (carcass weight, backfat thickness, and loin eye area), muscle fiber size (crosssectional area, diameter, and perimeter), muscle fiber number (density of fibers/$mm^2$ and total number of fibers), and fiber type composition (percentages of myofibers and relative areas of each fiber type) were evaluated. Mean cross-sectional area (CSA) and type IIB fiber CSA were positively correlated to carcass weight, backfat thickness and loin eye area. Mean fiber CSA was mostly related to type IIB CSA (r=0.98) as a result of the high percentage of type IIB fibers in the longissimus muscle. Correlations between fiber diameters and perimeters were also high, and showed similar results with CSA. Mean fiber density was negatively correlated to carcass weight (r=-0.24), backfat thickness (r=-0.18) and loin eye area (r=-0.27). To the contrary, total fiber number was positively correlated with carcass weight (r=0.27) and loin eye area (r=0.53). Carcass weight and loin eyZe area were not significantly related to muscle fiber composition. For backfat thickness, there was an opposition between type IIA percentage, which was positively related and type IIB percentage, which was negatively related. Fiber type composition of type I and IIA fibers were negatively correlated to that of type IIB fibers (r=-0.67 to -0.74). In the present study, carcass weight and loin eye area were positively correlated to CSA and negatively correlated to fiber density. But, these relationships were generally low. The fiber density was strongly affected by muscle fiber size and the total fiber number was affected either by CSA of muscle fiber and loin eye area. Fiber type composition was much more related to their numerical abundance than their CSA.

The Relationships between Muscle Fiber Characteristics, Intramuscular Fat Content, and Fatty Acid Compositions in M. longissimus lumborum of Hanwoo Steers

  • Joo, Seon-Tea;Joo, Sung-Hyun;Hwang, Young-Hwa
    • 한국축산식품학회지
    • /
    • 제37권5호
    • /
    • pp.780-786
    • /
    • 2017
  • The objective of this study was to investigate the relationship between muscle fiber characteristics, intramuscular fat (IMF) content, and fatty acids composition in longissimus lumborum (LL) muscle from Hanwoo steers. The LL muscles were obtained from four quality grades (QG) carcasses and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of muscle fiber types among muscles from four QGs. Both FNP and FAP of type I increased while those of type IIB decreased with increasing QG from QG 2 to QG $1^{{+}{+}}$ (p<0.05). Also, with increasing QG, the saturated fatty acid (SFA) proportion decreased while monounsaturated fatty acid (MUFA) increased significantly (p<0.05). IMF content was positively correlated with both FNP and FAP of type I, but negatively correlated with those of type IIB. The proportions of SFA and MUFA were significantly (p<0.001) correlated with both type I and IIB composition. These results implied that muscle fiber type composition is an important factor influencing fatty acid composition in LL muscle of Hanwoo steer.

Comparison of Chemical Composition, Quality, and Muscle Fiber Characteristics between Cull Sows and Commercial Pigs: The Relationship between Pork Quality Based on Muscle Fiber Characteristics

  • Jeong-Uk Eom;Jin-Kyu Seo;Kang-Jin Jeong;Sumin Song;Gap-Don Kim;Han-Sul Yang
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.87-102
    • /
    • 2024
  • This study aims to compare the chemical composition, quality, and muscle fiber characteristics of cull sows and commercial pigs, investigating the effect of changes in muscle fiber characteristics on pork quality. The proximate composition, color, pH, water-holding capacity (drip loss and cooking loss), protein solubility, total collagen content, and muscle fiber characteristics of cull sows (n=20) and commercial pigs (n=20) pork were compared. No significant differences were found between cull sows and commercial pigs in terms of proximate composition, drip loss, protein solubility, or total collagen content of their meat (p<0.05). However, cull sow pork exhibited a red color and a higher pH (p<0.05). This appears to be the result of changes in muscle fiber number and area composition (p<0.05). Cull sow meat also displayed better water-holding capacity as evident in a smaller cooking loss (p<0.05), which may be related to an increase in muscle fiber cross-sectional area (p<0.05). In conclusion, muscle fiber composition influences the pork quality; cull sow pork retains more moisture when cooked, resulting in minimal physical loss during processing and can offer more processing suitability.

Effects of Muscle Mass and Fiber Number of Longissimus dorsi Muscle on Post-mortem Metabolic Rate and Pork Quality

  • Ryu, Youn-Chul;Choi, Young-Min;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.667-671
    • /
    • 2005
  • The aim of this study is to investigate the effects of the muscle mass and fiber number on post-mortem metabolic rates and pork quality. Carcass traits, muscle fiber characteristics, and type of fiber composition were evaluated using a sample of 200 cross-bred pigs. The muscle mass was divided into two groups according to carcass weight and loin-eye area measurements (heavy or light). In addition, the muscle histological characteristics were divided into two groups according to the muscle fiber density and total number of muscle fibers (high or low). All the carcass traits were significantly different in the muscle mass groups. Increasing weight significantly affected the cross-sectional area (CSA) of all fibers. The low group, which had a low muscle fiber number indicating a larger CSA of fibers, and especially the heavy-low group had the highest CSA levels of fibers. The fiber number percentage and the area percentage were significantly different in the groups categorized by fiber number. The heavy-high group indicated a normal rate of pH decline and the R-value. In addition, pigs with a heavy muscle mass and high muscle fiber number indicated normal drip loss, lightness, and protein denaturation. The present results suggest that increasing the total muscle fiber number has a beneficial effect on increasing the muscle mass without deteriorating the meat quality.

Comparative review of muscle fiber characteristics between porcine skeletal muscles

  • Junyoung Park;Sung Sil Moon;Sumin Song;Huilin Cheng;Choeun Im;Lixin Du;Gap-Don Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.251-265
    • /
    • 2024
  • Meat derived from skeletal muscles of animals is a highly nutritious type of food, and different meat types differ in nutritional, sensory, and quality properties. This study was conducted to compare the results of previous studies on the muscle fiber characteristics of major porcine skeletal muscles to the end of providing basic data for understanding differences in physicochemical and nutritional properties between different porcine muscle types (or meat cuts). Specifically, the muscle fiber characteristics between 19 major porcine skeletal muscles were compared. The muscle fibers that constitute porcine skeletal muscle can be classified into several types based on their contractile and metabolic characteristics. In addition, the muscle fiber characteristics, including size, composition, and density, of each muscle type were investigated and a technology based on these muscle fiber characteristics for improving meat quality or preventing quality deterioration was briefly discussed. This comparative review revealed that differences in muscle fiber characteristics are primarily responsible for the differences in quality between pork cuts (muscle types) and also suggested that data on muscle fiber characteristics can be used to develop optimal meat storage and packaging technologies for each meat cut (or muscle type).

Muscle Fiber Characteristics on Chop Surface of Pork Loin (M. longissimus thoracis et lumborum) Associated with Muscle Fiber Pennation Angle and Their Relationships with Pork Loin Quality

  • Song, Sumin;Cheng, Huilin;Jung, Eun-Young;Joo, Seon-Tea;Kim, Gap-Don
    • 한국축산식품학회지
    • /
    • 제40권6호
    • /
    • pp.957-968
    • /
    • 2020
  • The influence of muscle architecture on muscle fiber characteristics and meat quality has not been fully elucidated. In the present study, muscle fiber characteristics on the chop surface of pork loin (M. longissimus thoracis et lumborum, LTL), pennation angle degree, and meat quality were evaluated to understand the pork LTL architecture and its relationship with the loin chop quality. Muscle fiber pennation degree ranged from 51.33° to 69.00°, resulting in an ellipse-shaped muscle fiber on the surface of pork loin chop. The cross-sectional area (CSA) on the sections cut vertical to the muscle length (M-Vertical) was considerably larger (p<0.05) than that on the sections cut vertical to the muscle fiber orientation (F-Vertical) regardless of the fiber type. Pennation angle is positively correlated with CSAs of F-Vertical (p<0.05) and with Warner-Bratzler shear force (r=0.53, p<0.01). Besides the shear force, lightness and pH were positively correlated with the fiber composition and CSA of IIX fiber (p<0.05); however, the redness, yellowness, drip loss, and cooking loss were not correlated with the pennation angle and muscle fiber characteristics on the chop surface (p>0.05). These observations might help us in better understanding pork loin architecture and the relationship between the pennation angle, muscle fiber characteristics, and meat quality of pork loin chop.

Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics

  • Ismail, Ishamri;Joo, Seon-Tea
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.873-883
    • /
    • 2017
  • Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers' preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.

Differences in Muscle Fiber Characteristics and Meat Quality by Muscle Type and Age of Korean Native Black Goat

  • Hwang, Young-Hwa;Bakhsh, Allah;Lee, Jung-Gyu;Joo, Seon-Tea
    • 한국축산식품학회지
    • /
    • 제39권6호
    • /
    • pp.988-999
    • /
    • 2019
  • To investigate the relationship between muscle fiber characteristics and meat quality traits by age of Korean native black goat (KNBG), four muscles (longissimus dorsi, LD; psoas major, PM; semimembranosus, SM; gluteus medius, GM) were obtained from five adult goat (AG; 18 months old) and five young goat (YG; 9 months old). PM muscle had the highest fiber number percentage (FNP) and fiber area percentage (FAP) of type I, followed by SM, GM, and LD muscles. FNP and FAP of type IIB were significantly (p<0.001) higher in AG than those in YG. YG had higher L* values but lower b* values than AG. The highest L* and b* values were observed in LD muscle (p<0.001). Age and muscle type had detrimental (p<0.001) effect on shear force and collagen content for all muscle in AG as compared to YG. YG had significantly (p<0.001) higher myofibrillar fragmentation index (MFI) than AG for all four muscles. These results suggest that muscle fiber compositions of different muscle types of KNBG depend on age, resulting in variations of meat color, MFI, collagen content, and shear force.

Muscle Fiber Characteristics and Fatty Acid Compositions of the Four Major Muscles in Korean Native Black Goat

  • Hwang, Young-Hwa;Joo, Sung-Hyun;Bakhsh, Allah;Ismail, Ishamri;Joo, Seon-Tea
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.948-954
    • /
    • 2017
  • The objective of this study was to investigate the relationship between muscle fiber characteristics and fatty acid composition of four major muscles in Korean native black goat (KNBG). Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), and gluteus medius (GM) were obtained from five male KNBGs of 36 mon of age and subjected to histochemical analysis and to determine fatty acid composition and meat quality traits. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these four muscles. PM had the highest FNP of type I and the lowest FNP of type IIB, while SM had the highest FNP of type IIB. The highest fat content was observed in LL while SM had the lowest fat content. The proportions of SFA and MUFA were significantly (p<0.05) different among four muscles due to differences in the majority of fatty acids such as oleic (C18:1) and palmitic (C16:0) acids. The PUFA/SFA ratio was significantly (p<0.05) different among four muscles, and the highest PUFA/SFA ratio was observed in PM. Results suggested that LL and PM might be healthful because of higher desirable fatty acid value and PUFA/SFA ratio, respectively. Also, data showed that correlations between muscle fiber types and fatty acids proportion of goat muscles were reversed with those of cattle muscles.

바다방석고둥육의 동결저장중 단백질조성과 근육조직의 변화 (Changes of Protein Composition and Muscle Tissues in Top Shell Meat during Frozen Storage)

  • 송대진;김창용;박환준
    • 한국식품영양과학회지
    • /
    • 제22권6호
    • /
    • pp.763-770
    • /
    • 1993
  • To investigate the quality changes during frozen storage, top shell, Omphalius pfeifferi capenteri, was stored at -18$^{\circ}C$, -$25^{\circ}C$ and -3$0^{\circ}C$ immediately after shelling and water holding capacity, protein composition and histological features were examined with the lapsed period of the storage. During the storage period, amount of free drip was increased with higher frozen temperature and longer frozen period, but with the longer storage period, the lower water holding capacity was observed. The extractability and composition of muscle protein, sarcoplasmic protein and stroma protein were rather stable regardless of frozen temperature and frozen storage period. However, the extractability of myofibrillar protein was decreased with higher frozen temperature and longer frozen storage period. On the changes of muscle tissue structure, following points were observed. 1) In the muscle tissue structure of fresh sample, fine muscle fiber was closely distributed all over the tissue regardless of cross and longitudinal section. 2) In tissue structure under frozen state, it was observed that ice crystals apparently grew with the higher storage temperature. Empty spaces between muscle bundles which wee formed by aggregations of muscle fiber were observed after 3 months storage at -18$^{\circ}C$ . 3) Tissue structure in thawed state was restored satisfactorily after 1 month storage regardless of storage temperature. After 3 months storage at -3$0^{\circ}C$, muscle tissue was well restored, but at -18$^{\circ}C$, empty spaces were apparent due to incomplete restoration.

  • PDF