• Title/Summary/Keyword: mung-bean (Phaseolus radiatus L.)

Search Result 10, Processing Time 0.028 seconds

Purification and Characterizationof Soluble Acid Invertase from the Hypocotyls of Mung Bean (Phaseolus radiatus L.) (녹두의 하배축에서 분리한 Soluble Acid Invertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 1995
  • The soluble acid invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified to apparent homogeneity by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, Concanavalin (Con) A affinity and Sephacryl S-300 chromatography. The overall purification was about 148-fold with a yield of about 15%. The finally purified enzyme exhibited a specific activity of about 139 $\mu$mol of glucose produced mg-1 protein min-1 at pH 5.0 and appeared to be a single protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE. The enzyme had the native molecular weight of 70 kD and subunit molecular weight of 70 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme was composed of a monomeric protein. On the other hand, the enzyme appeared to be a glycoprotein containing N-linked high mannose oligosaccharide chain on the basis of its ability to bind to the immobilized C on A. The enzyme had a Km for sucrose of 1.8 mM at pH 5.0 and maximum activity around pH 5.0. The enzyme showed highest enzyme activity with sucrose as substrate, but the activity was slightly measured with raffinose and cellobise. No activity was measured with maltose and lactose. These results indicate the soluble acid invertase is a $\beta$-fructofuranosidase.

  • PDF

Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.) (녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF

비소종(Arsenite, Arsenate, DMA)에 따른 토양독성 비교분석

  • Lee U-Mi;Lee Ju-Yeong;Im Seung-Yun;Jeong Hye-Won;An Yun-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.175-177
    • /
    • 2005
  • Effect of arsenite, arsenate and dimethylarsinic acid (DMA) on the growth of seedling plants were investigated in order to compare the toxicity of arsenic species in soil environments. Test plants were mung bean (Phaseolus radiatus), wheat (Triticum aestivum), barely (Hordeum vulgare), cucumber (Cucumis sativus L.). Seedling growth in As-contaminated soil were significantly reduced in all test species. Arsenite was more toxic than arsenate and DMA. Among the test plants, mung bean was most sensitive to arsenic, followed by cucumber, wheat, and barely.

  • PDF

The Effect of Plant Hormones and Light Quality on the Invertase Activity in Maize (Zea mays L.) and Mung Bean (Phaseolus radiatus L.) (옥수수와 녹두의 Invertase Isozymes 활성에 미치는 식물호르몬 및 광선의 효과)

  • Lee, Lee,Dong-Hee;Hong, Hong,Jung-Hee;Kim, Yeong-Sang
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.21-21
    • /
    • 1995
  • The effects of plant hormones (NAA, $GA_3$ and BA) and light qualities (white, red, green and blue light) on the changes of reducing sugar contents and invertase isozyme activities in leaves of maize (Zea mars L.) and mung bean (Phseolw radiatus L.) seedlings were investigated. NAA accelerated the increase of reducing sugar contents and invertase isozyme activities, on the contrary, $GA_3$ had little effect in the accumulation of reducing sugar and in the increase of enzyme activities from the leaves of maize and mung bean seedlings. On the other hand, BA accelerated an increase in the activities of the invertase isozyme from the leaves of mung bean seedlings whereas it had little effect in the increase of the enzyme activities from those of maize seedlings. The accumulation of reducing sugar in leaves of both seedlings was promoted by red light irradiation compared to white light irradiation, while the activities of the enzyme were little affected by various light Qualities. In the simultaneous applications of plant hormone and light quality, NAA with white light was very effective in the increase of reducing sugar contents and the enzyme activities from the leaves of mung bean seedlings, whereas NAA application with blue light showed a prominent enhancement in the reducing sugar contents and the enzyme activities from those of maize seedlings. These results suggest that plant hormone, particularly NAA, may be a more important factor than various light Qualities in the stimulation of invertase activity.

The Effect of Plant Hormones and Light Quality on the Invertase Activity in Maize (Zea mays L.) and Mung Bean (Phaseolus radiatus L.) (옥수수와 녹두의 Invertase Isozymes 활성에 미치는 식물호르몬 및 광선의 효과)

  • Lee, Dong-Hee;Hong, Jung-Hee;Kim, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.323-333
    • /
    • 1995
  • The effects of plant hormones (NAA, $GA_3$ and BA) and light qualities (white, red, green and blue light) on the changes of reducing sugar contents and invertase isozyme activities in leaves of maize (Zea mars L.) and mung bean (Phseolw radiatus L.) seedlings were investigated. NAA accelerated the increase of reducing sugar contents and invertase isozyme activities, on the contrary, $GA_3$ had little effect in the accumulation of reducing sugar and in the increase of enzyme activities from the leaves of maize and mung bean seedlings. On the other hand, BA accelerated an increase in the activities of the invertase isozyme from the leaves of mung bean seedlings whereas it had little effect in the increase of the enzyme activities from those of maize seedlings. The accumulation of reducing sugar in leaves of both seedlings was promoted by red light irradiation compared to white light irradiation, while the activities of the enzyme were little affected by various light Qualities. In the simultaneous applications of plant hormone and light quality, NAA with white light was very effective in the increase of reducing sugar contents and the enzyme activities from the leaves of mung bean seedlings, whereas NAA application with blue light showed a prominent enhancement in the reducing sugar contents and the enzyme activities from those of maize seedlings. These results suggest that plant hormone, particularly NAA, may be a more important factor than various light Qualities in the stimulation of invertase activity.

  • PDF

The Occurrence of Extrafloral Nectaries in Korean Plants (韓國植物의 花外蜜腺分布)

  • Pemberton, Robert W.
    • The Korean Journal of Ecology
    • /
    • v.13 no.4
    • /
    • pp.251-266
    • /
    • 1990
  • Extrafloral nectaries have been shown in many studies to promote mutualistic interactions between plants and insects(usually ants) that visit the glands. The insects gain sugars, water and amino acids secreted by the extrafloral nectaries and benefit the plants by reducing the damage caused by plant's inseet herbivores. Little is known about the occurrence of extrafloral nectaries in plants growing in Asia. To learn about the occurrence of extrafloral nectary bearing plants in Korea, living plants and herbarium material were examined for the glands. In addition, the cover of plants with extrafloral nectaries and the proportion of woody plants with extrafloral nectaries were measured in three forest communities on Kangwha Island. 131 species of plants belonging to 53 genera and 30 families were found to have extrafloral nectaries. These 131 species comprise about 4.0% of Korea's flora, a highet percentage of extrafloral nectary bearing plants than occurs in the studied areas of North America. Extrafloral nectary bearing plants occupied 7, 23 and 55% of the covers and comprised 15, 21 and 15% of the woody plants in the three different forests, a significant level of occurrence. Many important Korean crop plants were found to have extrafloral nectaries including : sesame (Sesamum indicum L.), squash (Cucurbita moschata Duchesne), sweet potato (Ipomoea batatas Lam), persimmon (Diospyros kaki Thunb.) cotton (Gossypium indicum Lam.), mung bean (Phaseolus radiatus L.), red bean (Phaseolus angularis W.F.), peach (Prunus persica (L) Batsch.), plum (Prunus salicina Lindl.). Many of these cultivated and wild plants may receive protection by ants and other beneficial insects that visit their extrafloral nectaries.

  • PDF

Compositions of Lipid Class and Fatty Acid in Lipids Extracted from Mung Bean Starch (녹두의 전분지질에 관한연구)

  • 엄수현;송영옥;최홍식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.87-93
    • /
    • 1990
  • The compositions of lipid class and fatty acid of free lipids as non-starch lipid and bound lipids(extraction either at low or high temperature) as starch-lipid extracted from starch in mung bean(phaseolus radiatus L) was investigated. The contents of neutral lipids glycolipids and phospholipids in free lipids were 98.2% 1.7% and 0.1%, whereas those found in bound lipids were 84.3-85.7% 10.5-11.0%, and 5.2-3.3% respectively The major components of neutral lipid fraction in the bound lipids were triglyceride and esterified sterol and those were composed of 0% of total neutral lipids. Monogalactosyl idiglyceride and esteryl steryl glycoside were observed as main glycolipids components in both free and bound lipids. Among the phospholipids in the bound lipids phosphatidylinositol phosphatidyl serine and phosphati-dyl ethanolamine were identified an major constituents. The free lipids contained palmitic(50.2%) stearic(20.6%) oleic(8.5%) and behenic(7.4%) acids and bound lipids had more palmi-tic and linoleic acids but less stearic acid compared to thosed in the free lipids.

  • PDF

Quality and Physicochemical Characteristics of Mung-Bean Cultivars Cultivated in the North-Central Region with Different Seeding Periods (파종시기에 따른 중북부 지역 재배 녹두 품종의 품질 및 이화학 특성)

  • Woo, Koan Sik;Kim, Sung Kook;Jung, Gun Ho;Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byong Won;Lee, Yu Young;Lee, Byoung Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.5
    • /
    • pp.577-586
    • /
    • 2018
  • The proximate compositions, quality and physicochemical characteristics of mung-bean cultivars cultivated in the north-central region of South Korea with different seeding periods were evaluated. A significant difference was noted in the proximate compositions and chromaticity of mung-beans according to cultivars and different seeding periods. Crude ash and protein content decreased with the delay in seeding period and a slight increase in carbohydrate content was observed. Redness of the other five cultivars increased with the delay in seeding period except for the cultivar Jangan, while the yellowness decreased in cultivars Geumsung and Jangan. Water binding capacity of the $1^{st}$, $2^{nd}$ and $3^{rd}$ seeding on the cultivar Eoul was 115.15, 99.76 and 96.31%, respectively, and a decrease in the binding capacity was observed with the delay in seeding periods. Water solubility index and swelling power were significantly different among cultivars. Total polyphenol content of $1^{st}$ and $2^{nd}$ seeding on the cultivar Jangan was 8.59 and 8.57 mg GAE/g, respectively, and a decrease was observed with the delay in seeding periods except for the cultivar Sohyeon. Total flavonoid content of $1^{st}$ seeding on the cultivar Jangan was 5.25 mg CE/g, which decreased with the delay in seeding periods. DPPH radical scavenging activity of $1^{st}$ seeding on the cultivars Geumsung and Kyungseon was 2.44 and 2.32 mg TE/g, respectively, which decreased with the delay in seeding periods. The BTS radical scavenging activity of $1^{st}$ seeding on the cultivar Jangan was 6.98 mg TE/g. In the present study, the variations in phenol content and radical scavenging activity were observed to be dependent on the cultivars and seeding periods.

A study on the physicochemical properties of sausage analogue made with mixed bean protein concentrate (혼합농축콩단백을 첨가한 대체 소시지의 이화학적 특성에 관한 연구)

  • Cha, Seo-Hui;Shin, Kyung-Ok;Han, Kyoung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.641-648
    • /
    • 2020
  • The objective of this study was to optimize the mixing ratio of mixed bean protein concentrate (MBPC) and to improve the quality of sausage analogues. Soybean (Glycine max MERR), mung bean (Phaseolus radiatus L.), red bean [Vigna angularis (Wild.)], and pea (Pisum sativum L.) were mixed and processed to produce a MBPC, which was used to make a sausage analogue. The protein, moisture, and carbohydrate content were significantly (p<0.05) different among the samples. A significant (p<0.05) improvement was observed in textural properties (hardness, gumminess, and chewiness), cooking loss, frying loss, and emulsion stability of the sausage analogue. This study suggested the possibility of attaining high-quality sausage analogues and partial sausage analogues using MBPC, which could serve as a potential ingredient in meat analogues.