• 제목/요약/키워드: multivariate optimization

검색결과 49건 처리시간 0.021초

다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘 (Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem)

  • 이병길;전규범;이종환
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

Modern vistas of process control

  • Georgakis, Christos
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.18-18
    • /
    • 1996
  • This paper reviews some of the most prominent and promising areas of chemical process control both in relations to batch and continuous processes. These areas include the modeling, optimization, control and monitoring of chemical processes and entire plants. Most of these areas explicitly utilize a model of the process. For this purpose the types of models used are examined in some detail. These types of models are categorized in knowledge-driven and datadriven classes. In the areas of modeling and optimization, attention is paid to batch reactors using the Tendency Modeling approach. These Tendency models consist of data- and knowledge-driven components and are often called Gray or Hybrid models. In the case of continuous processes, emphasis is placed in the closed-loop identification of a state space model and their use in Model Predictive Control nonlinear processes, such as the Fluidized Catalytic Cracking process. The effective monitoring of multivariate process is examined through the use of statistical charts obtained by the use of Principal Component Analysis (PMC). Static and dynamic charts account for the cross and auto-correlation of the substantial number of variables measured on-line. Centralized and de-centralized chart also aim in isolating the source of process disturbances so that they can be eliminated. Even though significant progress has been made during the last decade, the challenges for the next ten years are substantial. Present progress is strongly influenced by the economical benefits industry is deriving from the use of these advanced techniques. Future progress will be further catalyzed from the harmonious collaboration of University and Industrial researchers.

  • PDF

Multiresponse Optimization and Prediction of Antioxidant Properties of Aqueous Ginger Extract

  • Makanjuola, Solomon Akinremi;Enujiugha, Victor Ndigwe;Omoba, Olufunmilayo Sade
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.355-360
    • /
    • 2016
  • The influence of extraction temperature, powder concentration, and extraction time on the antioxidant properties of aqueous ginger extract was investigated. The possibility of estimating the antioxidant properties of the extract from its absorbance and colour properties was also investigated. Results indicated that powder concentration was the most significant factor to consider in optimizing antioxidant extraction. However, temperature and time still influenced the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity while extraction temperature influenced the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extract. Using the total phenol content, total flavonoid content, ABTS radical scavenging activity, and DPPH radical scavenging activity of the extract, the multiresponse optimization condition for extraction of antioxidant based on the experimental range studied is $96^{\circ}C$, 2.10 g/100 mL, and 90 min. The absorbance of the ginger extract at 610 nm could be exploited for rapid estimation of its total flavonoid and polyphenol with a $R^2$ of 0.713 and 0.753, respectively.

Prediction of long-term compressive strength of concrete with admixtures using hybrid swarm-based algorithms

  • Huang, Lihua;Jiang, Wei;Wang, Yuling;Zhu, Yirong;Afzal, Mansour
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete is a most utilized material in the construction industry that have main components. The strength of concrete can be improved by adding some admixtures. Evaluating the impact of fly ash (FA) and silica fume (SF) on the long-term compressive strength (CS) of concrete provokes to find the significant parameters in predicting the CS, which could be useful in the practical works and would be extensible in the future analysis. In this study, to evaluate the effective parameters in predicting the CS of concrete containing admixtures in the long-term and present a fitted equation, the multivariate adaptive regression splines (MARS) method has been used, which could find a relationship between independent and dependent variables. Next, for optimizing the output equation, biogeography-based optimization (BBO), particle swarm optimization (PSO), and hybrid PSOBBO methods have been utilized to find the most optimal conclusions. It could be concluded that for CS predictions in the long-term, all proposed models have the coefficient of determination (R2) larger than 0.9243. Furthermore, MARS-PSOBBO could be offered as the best model to predict CS between three hybrid algorithms accurately.

다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정 (A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination)

  • 정인준
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

신경망이론을 이용한 강우예측모형의 개발 (Development of Rainfall Forecastion Model Using a Neural Network)

  • 오남선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

Mahalanobis Taguchi System을 이용한 자동차 브레이크 성능 만족도를 고려한 설계조건 선정에 관한 연구 (Selecting Optimal Design Condition Based on Automobile Brake Feeling Using Mahalanobis Taguchi System)

  • 홍정의;권홍규
    • 산업경영시스템학회지
    • /
    • 제30권1호
    • /
    • pp.41-47
    • /
    • 2007
  • Mahalanobis Taguchi-System (MTS) is a pattern information technology, which has been used in different diagnostic ap plications to make quantitative decisions by constructing a multivariate system using data analytic methods without any as sumption regarding statistical distribution. MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric In this work, MTS used for analyzing automotive brake feeling system, which measured as a brake feel index (BFI) from 9 attributes. The automobile which has a good BFI score treated as a normal group for constructing Mahalanobis space. The results of this research show that two attributes (Pre load & Max deceleration) have a minus gain value and can be removed from further analysis. The difference of MD value between using all 9 attributes and just using significant attribute compared.

다중반응치 자료에 대한 순차적 BIPLOT활용에 대한 연구 (A Study of Applications of Sequential Biplots in Multiresponse Data)

  • 장대흥
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.451-459
    • /
    • 1998
  • 반응표면분석에서 다반응값의 최적화 문제는 단반응값 최적화문제보다 복잡하다. 이런 다반응값 문제에서 반응변수들이나 설명변수 상호간의 관계나 중요성 등을 평가하는 것은 중요하다. 이러한 평가를 위하여 biplot를 이용할 수 있는데, 1차 회귀모형이 적합치 않은 경 우, 2차 회귀모형을 위한 순차적 실험계획을 이용하여 2차 회귀 모형에 대응되는 biplot를 그려 선형 및 비선형효과를 알 수 없게 된다.

  • PDF

Use of uncertain numbers for appraising tensile strength of concrete

  • Tutmez, Bulent;Cengiz, A. Kemal;Sarici, Didem Eren
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.447-458
    • /
    • 2013
  • Splitting tensile strength (STS) is a respectable mechanical property reflecting ability of the concrete. The STS of concrete is mainly related to compressive strength (CS), water/binder (W/B) ratio and concrete age. In this study, the assessment of STS is made by a novel uncertainty-oriented method which uses least square optimization and then predicts STS of concrete by uncertain (fuzzy) numbers. The approximation method addresses a novel integration of fuzzy set theory and multivariate statistics. The numerical examples showed that the method is applicable with relatively limited data. In addition, the prediction of uncertainty at various levels of possibility can be described. In conclusion, the uncertainty-oriented interval analysis can be suggested an effective tool for appraising the uncertainties in concrete technology.