• 제목/요약/키워드: multivariate density estimation

검색결과 14건 처리시간 0.023초

Modified Probabilistic Neural Network of Heterogeneous Probabilistic Density Functions for the Estimation of Concrete Strength

  • Kim, Doo-Kie;Kim, Hee-Joong;Chang, Sang-Kil;Chang, Seong-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제19권1E호
    • /
    • pp.11-16
    • /
    • 2007
  • Recently, probabilistic neural network (PNN) has been proposed to predict the compressive strength of concrete for the known effect of improvement on PNN by the iteration method. However, an empirical method has been incorporated in the PNN technique to specify its smoothing parameter, which causes significant uncertainty in predicting the compressive strength of concrete. In this study, a modified probabilistic neural network (MPNN) approach is hence proposed. The global probability density function (PDF) of variables is reflected by summing the heterogeneous local PDFs which are automatically determined by the individual standard deviation of each variable. The proposed MPNN is applied to predict the compressive strength of concrete using actual test data from a concrete company. The estimated results of MPNN are compared with those of the conventional PNN. MPNN showed better results than the conventional PNN in predicting the compressive strength of concrete and provided promising results for the probabilistic approach to predict the concrete strength by using the individual standard deviation of a variable.

다변수 그램-샬리어 급수 A형을 이용한 고조파 페이서 전압의 확률적 예측 계산 (Stochastic Estimation of Phasor Voltage of Harmonics Using Multivariate Gram-Charlier Type A Series)

  • 김태현;박인규;박종근;강영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.469-473
    • /
    • 1987
  • This paper presents a method to estimate p.d.f.(probability density function) of harmonic phasor voltage. Because the quantity of harmonics is not fixed, stochastic analysis of harmonics is needed. Because it is impossible to obtain p.d.f. of voltage from p.d.f. of current directly, the moments of voltage and current are used. Firstly, the moments of current is calculated from p.d.f. of current. Secondly, the moments of voltage are calculated from the moments of current using the linearity of the moments. Finally, p.d.f. of voltage is estimated from the moments of voltage using Gram-Charlier Type A Series. [1] The moments of the p.d.f. obtained by the series and of the true p.d.f. is same up to given finite moments. Because current and voltage of harmonics are represented as not instantaneous values but phasors, the estimated value can be compared with the measured value and harmonic phasor voltage can be analyzed when the p.d.f. of phase is nonuniform as well as uniform.

  • PDF

피라미드 구조와 베이지안 접근법을 이용한 Markove Random Field의 효율적 모델링 (Efficient Methodology in Markov Random Field Modeling : Multiresolution Structure and Bayesian Approach in Parameter Estimation)

  • 정명희;홍의석
    • 대한원격탐사학회지
    • /
    • 제15권2호
    • /
    • pp.147-158
    • /
    • 1999
  • 지표면에 대한 다양한 정보를 제공해 주는 원격탐사기법은 수 십년 동안 우리의 환경을 관찰하고 이해하는데 중요한 역할을 해왔다. 이러한 원격탐사 자료를 이용하는데 다양한 디지털 영상처리기법이 도입되어 자료에서 관찰되는 여러 가지 특성을 모형화하고 처리하는데 매우 유용하게 활용되어져 왔다. 화소들 간의 공간적 관계를 고려하는 Markov Random Field (MRF) 모형은 텍스처 모델링이나 영상분할 및 분류와 같은 여러 분야에서 많이 이용되는 모형으로 이것에 기초한 다양한 알고리즘이 발표되었다. 보통 원격탐사 자료는 그 크기가 매우 크고 시간적 간격을 두고 변화를 관측해 가는 경우에는 분석해야할 자료의 양이 매우 방대하다. 이러한 자료를 처리하는데 걸리는 시간은 처리해야할 자료의 양과는 비선형적 관계에 있다. 본 논문에서는 MRF를 이용하여 원격탐사 자료를 처리할 때 걸리는 시간을 단축하기 위한 방법론이 연구되었다. 이를 위해 논리적 구조로 영상을 피라미드형태로 감소하는 크기로 분석하는 multiresolution 구조가 고려되었는데 이는 연상의 거시적 특징과 미세한 특징을 효율적으로 분석할 수 있는 방법을 제공해 준다. 영상의 크기가 커질수록 파라미터 추정 또한 복잡하고 많은 시간을 요하게 된다. 본 논문에서는 이를 위해 Bayesian 방법을 이용하여 원격탐사 영상과 같은 크기가 큰 영상의 MRF 모형의 파라미터를 효율적으로 추정할 수 있는 방법에 제안되어 있다.

다변량 핵밀도 추정법을 이용한 일강수량 모의에 대한 연구 (A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation)

  • 차영일;문영일
    • 한국수자원학회논문집
    • /
    • 제38권8호
    • /
    • pp.595-604
    • /
    • 2005
  • 관측자료의 보완이나 확충을 위한 강수량 모의발생은 수문분석에 있어서 중요한 과제라고 할 수 있다. 강수량을 모의하는 방법은 크게 기존의 매개변수적 방법과 비매개변수적 방법 두 가지로 나눌 수 있고, 강수량 모의의 시간간격에 따라 일강수량 자료의 모의 또는 시간강수량 자료의 모의 등으로 구분할 수 있다. 지금까지, Markov모형은 일강수량 모의발생에 많이 이용되어왔다. 이러한 대부분 Markov모형들은 동질성모형으로 상태벡터를 구축하는데 있어서 자료의 크기가 작으면 모형구축의 어려움이 따르고 같은 월에 대한 상태벡터의 동질성을 가정하는 등의 문제가 있다. 실제 강수발생의 과정은 비정상적(nonstationary)이므로 이를 보완하기 위해, 된 논문에서는 일강수량을 기존의 매개변수적인 방법이 아닌 단변량과 다변량에 대하여 비매개변수적인 방법으로 접근하여 모의하는 방법에 대하여 분석하였다.