• Title/Summary/Keyword: multivariate analysis

Search Result 3,282, Processing Time 0.033 seconds

Diagnosis of Thickness Quality Using Multivariate Statistical Analysis in Hot Finishing Mill

  • Kim, Heung-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.3-116
    • /
    • 2001
  • A diagnosis methodology for thickness quality in hot finishing mill is proposed based on multivariate statistical analysis. The thickness of hot strip is a key quality factor that is measured by x-ray thickness gauge. Currently, the thickness quality is guaranteed by upper and lower limit of thickness deviation from target thickness. But if any over-limit is occurred, there is no in-line method to identify the causes. In this paper, many parameters are extracted from the thickness deviation signal such as mean deviation(top, middle, tail), rms deviation(top, middle, tail) and peak deviation(top, middle, tail) as time domain parameters ...

  • PDF

Binary classification on compositional data

  • Joo, Jae Yun;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.89-97
    • /
    • 2021
  • Due to boundedness and sum constraint, compositional data are often transformed by logratio transformation and their transformed data are put into traditional binary classification or discriminant analysis. However, it may be problematic to directly apply traditional multivariate approaches to the transformed data because class distributions are not Gaussian and Bayes decision boundary are not polynomial on the transformed space. In this study, we propose to use flexible classification approaches to transformed data for compositional data classification. Empirical studies using synthetic and real examples demonstrate that flexible approaches outperform traditional multivariate classification or discriminant analysis.

Multivariate Analysis of Covariance on Characteristics Influencing Technological and Managerial Barriers of Technology Startups

  • Geonil Ko;Namjae Cho
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.27-43
    • /
    • 2024
  • This study investigated technological and managerial barriers in technology startups through a survey of 151 companies, yielding 118 responses (78.1% response rate). Factor and multivariate analyses identified two distinct barriers: technological and managerial. Reliability analysis validated the measurement tool. Using MANCOVA, 12 hypotheses were tested, incorporating six independent variables. Results revealed significant disparities in technological and managerial barriers based on establishment type, commercialization goals, growth stage, and commercialization stage, with 5 hypotheses supported. This study highlights the crucial role of these variables in understanding barriers within technology-based startups.

Comparing Role of Two Chemotherapy Regimens, CMF and Anthracycline-Based, on Breast Cancer Survival in the Eastern Mediterranean Region and Asia by Multivariate Mixed Effects Models: a Meta-Analysis

  • Ghanbari, Saeed;Ayatollahi, Seyyed Mohammad Taghi;Zare, Najaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5655-5661
    • /
    • 2015
  • Purpose: To assess the role of two adjuvant chemotherapy regimens, anthracycline-based and CMF on disease free survival and overall survival breast cancer patients by meta-analysis approach in Eastern Mediterranean and Asian countries to determine which is more effective and evaluate the appropriateness and efficiency of two different proposed statistical models. Materials and Methods: Survival curves were digitized and the survival proportions and times were extracted and modeled to appropriate covariates by two multivariate mixed effects models. Studies which reported disease free survival and overall survival curves for anthracycline-based or CMF as adjuvant chemotherapy that were published in English in the Eastern Mediterranean region and Asia were included in this systematic review. The two transformations of survival probabilities (Ln (-Ln(S)) and Ln(S/ (1-S))) as dependent variables were modeled by a multivariate mixed model to same covariates in order to have precise estimations with high power and appropriate interpretation of covariate effects. The analysis was carried out with SAS Proc MIXED and STATA software. Results: A total of 32 studies from the published literature were analysed, covering 4,092 patients who received anthracycline-based and 2,501 treated with CMF for the disease free survival and in order to analyze the overall survival, 13 studies reported the overall survival curves in which 2,050 cases were treated with anthracycline-based and 1,282 with CMF regimens. Conclusions: The findings illustrated that the model with dependent variable Ln (-Ln(S)) had more precise estimations of the covariate effects and showed significant difference between the effects of two adjuvant chemotherapy regimens. Anthracycline-based treatment gave better disease free survival and overall survival. As an IPD meta-analysis in the Italy the results of Angelo et al in 2011 also confirmed that anthracycline-based regimens were more effective for survival of breast cancer patients. The findings of Zare et al 2012 on disease free survival curves in Asia also provided similar evidence.

Multivariate Statistical Analysis Approach to Predict the Reactor Properties and the Product Quality of a Direct Esterification Reactor for PET Synthesis (다변량 통계분석법을 이용한 PET 중합공정 중 직접 에스테르화 반응기의 거동 및 생산제품 예측)

  • Kim Sung Young;Chung Chang Bock;Choi Soo Hyoung;Lee Bomsock;Lee Bomsock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.550-557
    • /
    • 2005
  • The multivariate statistical analysis methods, using both multiple linear regression(MLR) and partial least square(PLS), have been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PET) synthesis. On the basis of the set of data including the flow rate of water vapor, the flow rate of EG vapor, the concentration of acid end groups of a product and other operating conditions such as temperature, pressure, reaction times and feed monomer mole ratio, two multi-variable analysis methods have been applied. Their regression and prediction abilities also have been compared. The prediction results are critically compared with the actual plant data and the other mathematical model based results in reliability. This paper shows that PLS method approach can be used for the reasonably accurate prediction of a product quality of a direct esterification reactor in PET synthesis process.

A Study on the Estimation of Coefficients K and n Using Multivariate Data Analysis (다변량 통계기법을 이용한 K및 n의 산정에 관한 연구)

  • 백용진;최재성;배동명;김경진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.583-590
    • /
    • 2003
  • For the preestimate of the vibration level of the ground next to a dwelling, a multivariate statistical analysis on the experiment data acquired from a variety of construction sites was performed, and then a new estimate model for the value of K and n that can be applied in the diagnosis of the damage was offered. The results maybe summarized as follows : First, the $K_{95}$ and n showed high correlation at P$\leq$0.05. Specially the correlation coefficient about $W_{max}$, S were higher in $K_{95}$ than in n. indicating that $K_{95}$ is generally associated with source conditions. Second, the factor analysis permitted to identify two major sources in each fraction. These sources accounted for at least 73 % of valiance of $K_{95}$. Third, the multiple regression model for the estimate of $K_{95}$ was developed from Fac1 which depend upon the source conditions and Fac2 which depend upon the transmission conditions. The n value is able to determine from the correlation relationship associated with $K_{95}$./.

Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis

  • Jung, Jee-Youn;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.54-68
    • /
    • 2011
  • $^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.

Accuracy of periodontal probe visibility in the assessment of gingival thickness

  • Kim, Young-Sung;Park, Ji-Sun;Jang, Young-Hun;Son, Jung-Hun;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Purpose: The present study was undertaken to examine whether periodontal probe visibility (PV) accurately reflects gingival thickness (GT) and to identify factors affecting PV using cluster and multivariate analyses. Methods: The clinical characteristics of the maxillary central incisors (n=90 subjects) were examined. Clinical photographs, sex, PV, probing depth, gingival width, papilla height, GT as measured with an ultrasonic device, and the ratio of crown width to crown length were recorded. Multivariate analysis, using multinomial baseline-category logistic regression, was used to identify factors predictive of PV. Cluster analysis was used to identify gingival biotypes. Results: In the multivariate analysis, sex was the only significant predictor of PV (odds ratio, 6.48). Two clusters of subjects were created based on morphometric parameters. The mean GT among cluster A subjects was significantly lower than that among cluster B subjects (P=0.015). No significant difference was found between cluster A and B subjects in terms of PV score (P=0.583). Conclusions: Periodontal PV was not associated with GT as measured directly using an ultrasonic device. Sex was a highly significant predictor of periodontal PV. GT was found to be correlated with morphological characteristics of the periodontium.