In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.
The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.
The main purpose of this study is to derive a regression equation that predicts the individual differences in activity energy expenditure (AEE) using accelerometer during different types of activity. Two subject groups were recruited separately in time: One is a homogeneous group of 94 healthy young adults with age ranged from $20\sim35$ yrs. The other subject group has a broad spectrum of physical characteristics in terms of age and fat ratio. 226 adolescents and adults of age ranged from $12\sim57$ yrs and fat ratio from $4.1\sim39.7%$ were in the second group. The wireless 3-axis accelerometers were developed and carefully fixed at the waist belt level. Simultaneously the total calorie expenditure was measured by gas analyzer. Each subject performed walking and running at speeds of 1.5, 3.0, 4.5, 6.0, 6.5, 7.5, and 8.5 km/hr. A generalized sensor-independent regression equation for AEE was derived. The regression equation was developed fur walking and running. The regression coefficients were predicted as functions of physical factors-age, gender, height, and weight with multivariable regression analysis. The generalized calorie estimation equation predicts AEE with correlation coefficient of 0.96 and the average accuracy of the accumulated calorie was $89.6{\pm}7.9%$.
Junjie Zhang;Zhi Yin;Jianxin Zhang;Ruirui Song;Yanfen Cui;Xiaotang Yang
Korean Journal of Radiology
/
v.25
no.9
/
pp.788-797
/
2024
Objective: To investigate the potential association among preoperative breast MRI features, axillary nodal burden (ANB), and disease-free survival (DFS) in patients with early-stage breast cancer. Materials and Methods: We retrospectively reviewed 297 patients with early-stage breast cancer (cT1-2N0M0) who underwent preoperative MRI between December 2016 and December 2018. Based on the number of positive axillary lymph nodes (LNs) determined by postoperative pathology, the patients were divided into high nodal burden (HNB; ≥3 positive LNs) and non-HNB (<3 positive LNs) groups. Univariable and multivariable logistic regression analyses were performed to identify independent risk factors associated with ANB. Predictive efficacy was evaluated using the receiver operating characteristic (ROC) curve and area under the curve (AUC). Univariable and multivariable Cox proportional hazards regression analyses were performed to determine preoperative features associated with DFS. Results: We included 47 and 250 patients in the HNB and non-HNB groups, respectively. Multivariable logistic regression analysis revealed that multifocality/multicentricity (adjusted odds ratio [OR] = 3.905, 95% confidence interval [CI]: 1.685-9.051, P = 0.001) and peritumoral edema (adjusted OR = 3.734, 95% CI: 1.644-8.479, P = 0.002) were independent risk factors for HNB. Combined peritumoral edema and ultifocality/multicentricity achieved an AUC of 0.760 (95% CI: 0.707-0.807) for predicting HNB, with a sensitivity and specificity of 83.0% and 63.2%, respectively. During the median follow-up period of 45 months (range, 5-61 months), 26 cases (8.75%) of breast cancer recurrence were observed. Multivariable Cox proportional hazards regression analysis indicated that younger age (adjusted hazard ratio [HR] = 3.166, 95% CI: 1.200-8.352, P = 0.021), larger tumor size (adjusted HR = 4.370, 95% CI: 1.671-11.428, P = 0.002), and multifocality/multicentricity (adjusted HR = 5.059, 95% CI: 2.166-11.818, P < 0.001) were independently associated with DFS. Conclusion: Preoperative breast MRI features may be associated with ANB and DFS in patients with early-stage breast cancer.
Objectives: The purpose of this study was to analyze the factors affecting Bisphenol A (BPA) exposure in children and adolescents using the results of the Korean National Environmental Health Survey (KoNEHS) cycle 3. Methods: A total of 2,380 subjects (n=571, 887, and 922 for 3-5, 6-11, and 12-17 years of age, respectively) were analyzed using an environmental exposure survey and environmental chemical substances concentration levels. Univariable linear regression analysis was performed to determine associated variables such as sex, age, income level, housing type, secondhand smoke time, cup noodles and canned food consumption, seafood consumption, new furniture (within the previous six months), drinking water type, and consumption of herbal medicines. Variables with p-values of less than 0.2 were extracted from the results and a multivariable linear regression analysis was performed using stepwise selection. Results: Univariable linear regression analysis showed positive associations between BPA concentration levels and variables including sex, age, secondhand smoke time, new furniture (within the previous six months), renovated living space (within the previous six months), fish and shellfish consumption, plastic-bottled drink consumption, and herbal medicine. As a result of performing multivariable linear regression analysis, the lower was the age the higher was the concentration of BPA levels. Additionally, women showed higher BPA levels than those of men. The more frequently fish was consumed, the higher was the BPA concentration. Moreover, higher BPA concentrations were observed when taking herbal medicine. Conclusions: The main factors affecting BPA concentration levels were age, gender, and consumption of fish and herbal medicine.
Objectives: We sought to evaluate the mitigating effect of using floss and interdental brushes on periodontal health inequality. Methods: This study was based on data acquired from the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII; 2016-2018). We included 11,359 participants aged ≥19 years in the final analysis. Multivariable logistic regression analysis was performed using socioeconomic characteristics, health behavior, health status, and periodontitis status. We analyzed differences in the prevalence of periodontitis according to household income stratified by the use of floss and interdental brush. Results: In the multivariable logistic regression model, the lowest income group had 1.304 (95% confidence interval [CI] 1.08-1.58) odds ratios for periodontitis than the highest income group. In the interdental brush nonusers or floss nonusers, the lowest income group had significantly higher odds of developing periodontitis. However, we found no significant differences in the periodontitis prevalence between the income groups among the interdental brush users. In the 65-year-old or older group, the same result was observed in the interdental brush and floss users. Conclusions: The results suggest that the use of floss and interdental brushes could alleviate periodontal health inequality.
This study was undertaken to assess the potential of body mass index (BMI) as a risk factor for massive hemorrhage (MH) after cesarean section (CS) in patients with placenta previa. We retrospectively reviewed the medical records of patients who underwent CS for placenta previa between January 2010 and December 2018. MH was defined as an estimated blood loss ≥2,000 mL during surgery. Clinical characteristics, including BMI, were compared between the groups with and without MH. Subsequently, multivariable logistic regression analysis was conducted to identify the independent risk factors for MH. A total of 189 patients were included in this study. MH was observed in 28 patients (14.8%). According to the multivariable logistic regression analysis results, the risk factors independently associated with MH were BMI at delivery (adjusted odds ratio [aOR], 1.19; 95% confidence interval [CI], 1.04-1.35; P=0.012), placenta accrete (aOR, 24.55; 95% CI, 2.75-219.02; P=0.004), and total previa degree (aOR, 9.86; 95% CI, 2.71-35.96; P=0.001). The study findings showed that maternal obesity, namely a higher BMI at delivery, was an independent risk factor for MH after CS in patients with placenta previa. Close attention should be paid to the potential risk of hemorrhage associated with maternal obesity as well as the well-known risk factors of placenta accreta and total previa degree.
Purpose: The purpose of this article is twofold: 1) introducing logistic regression (LR), a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, and 2) examining use and reporting of LR in the nursing literature. Methods: Text books on LR and research articles employing LR as main statistical analysis were reviewed. Twenty-three articles published between 2010 and 2011 in the Journal of Korean Academy of Nursing were analyzed for proper use and reporting of LR models. Results: Logistic regression from basic concepts such as odds, odds ratio, logit transformation and logistic curve, assumption, fitting, reporting and interpreting to cautions were presented. Substantial shortcomings were found in both use of LR and reporting of results. For many studies, sample size was not sufficiently large to call into question the accuracy of the regression model. Additionally, only one study reported validation analysis. Conclusion: Nursing researchers need to pay greater attention to guidelines concerning the use and reporting of LR models.
Objective : This study aimed to assess the relationship between increased intracranial pressure (ICP) and mastoid effusions (ME). Methods : Between January 2015 and October 2018, patients who underwent intracranial surgery and had ICP monitoring catheters placed were enrolled. ICP was recorded hourly for at least 3 days. ME was determined by the emergence of opacification in mastoid air cells on follow-up brain imaging. C-reactive protein (CRP) levels, presence of endotracheal tube (ETT) and nasogastric tube (NGT), duration of intensive care unit (ICU) stay, duration of mechanical ventilator application, diagnosis, surgical modalities, and presence of sinusitis were recorded. Each factor's effect on the occurrence of ME was analyzed by binary logistic regression analyses. To analyze the independent effects of ICP as a predictor of ME a multivariable logistic regression analysis was performed. Results : Total of 61 (53%) out of 115 patients had ME. Among the patients who had unilateral brain lesions, 94% of subject (43/50) revealed the ipsilateral development of ME. ME developed at a mean of 11.1±6.2 days. The variables including mean ICP, peak ICP, age, trauma, CRP, ICU stays, application of mechanical ventilators and presence of ETT and NGT showed statistically significant difference between ME groups and non-ME groups in univariate analysis. Sex and the occurrence of sinusitis did not differ between two groups. Adding the ICP variables significantly improved the prediction of ME in multivariable logistic regression analysis. Conclusion : While multiple factors affect ME, this study demonstrates that ICP and ME are probably related. Further studies are needed to determine the mechanistic relationship between ICP and middle ear pressure.
Oh, Tak Kyu;Jo, Jihoon;Jeon, Young-Tae;Song, In-Ae
Acute and Critical Care
/
v.33
no.4
/
pp.230-237
/
2018
Background: Socioeconomic status (SES) is closely associated with health outcomes, including mortality in critically ill patients admitted to intensive care unit (ICU). However, research regarding this issue is lacking, especially in countries where the National Health Insurance System is mainly responsible for health care. This study aimed to investigate how the SES of ICU patients in South Korea is associated with mortality. Methods: This was a retrospective observational study of adult patients aged ${\geq}20$ years admitted to ICU. Associations between SES-related factors recorded at the time of ICU admission and 30-day and 1-year mortalities were analyzed using univariable and multivariable Cox regression analyses. Results: A total of 6,008 patients were included. Of these, 394 (6.6%) died within 30 days of ICU admission, and 1,125 (18.7%) died within 1 year. Multivariable Cox regression analysis found no significant associations between 30-day mortality after ICU admission and SES factors (P>0.05). However, occupation was significantly associated with 1-year mortality after ICU admission. Conclusions: Our study shows that 30-day mortality after ICU admission is not associated with SES in the National Health Insurance coverage setting. However, occupation was associated with 1-year mortality after ICU admission.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.