• Title/Summary/Keyword: multispectral

Search Result 344, Processing Time 0.029 seconds

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Construction of Multi-Dimensional Ortho-Images with a Digital Camera and the Multi-Image Connection Method (디지털카메라와 다중영상접합법을 이용한 다차원 정사영상의 구축)

  • Kim, Dong Moon
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.295-302
    • /
    • 2014
  • Essential to the establishment of such 3D spatial information are the laser scanning technology to obtain high-precision 3D point group data and the photography-metric camera to obtain high-resolution multispectral image information. The photography-metric camera, however, lacks in usability for its broad scope of utilization due to the high purchase price, difficult purchase channel, and low applicability. This study thus set out to investigate a technique to establish multi-dimensional ortho-image data with a single lens reflex digital camera of high speed and easy accessibility for general users. That is, the study remodeled a single lens reflex digital camera and calibrated the remodeled camera to establish 3D multispectral image information, which is the essential data of 3D spatial information. Multi-dimensional ortho-image data were collected by surveying the reference points for stereo photos, taking multispectral shots of the objects, and converting them into ortho-images.

Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City (지상 분광반사자료를 훈련샘플로 이용한 감독분류의 정확도 평가: 세종시 금남면을 사례로)

  • Shin, Jung Il;Kim, Ik Jae;Kim, Dong Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • Many studies are focused on image data and classifier for comparison or improvement of classification accuracy. Therefore studies are needed aspect of the training samples on supervised classification which depend on reference data or skill of analyst. This study tries to assess usability of field spectra as training samples on supervised classification. Classification accuracies of hyperspectral and multispectral images were assessed using training samples from image itself and field spectra, respectively. The results shown about 90% accuracy with training sample collected from image. Using field spectra as training sample, accuracy was decreased 10%p for hyperspectral image, and 20%p for multispectral image. Especially, some classes shown very low accuracies due to similar spectral characteristics on multispectral image. Therefore, field spectra might be used as training samples on classification of hyperspectral image, although it has limitation for multispectral image.

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Calculation of correction coefficients for the RedEdge-MX multispectral camera through intercalibration with a hyperspectral sensor (초분광센서와의 상호교정을 통한 RedEdge-MX 다분광 카메라의 보정계수 산출)

  • Baek, Seungil;Koh, Sooyoon;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Spectroradiometers have recently been drawing great attention in earth observing communities for its capability for obtaining target's quantitative properties. In particular, light-weighted multispectral cameras are gaining popularity in many field domains, as being utilized on UAV's. Despite the importance of the radiometric accuracy, studies are scarce on the performance of the inexpensive multispectral camera sensors that have various applications in agricultural, vegetation, and water quality analysis. This study conducted assessment of radiometric accuracy for MicaSense RedEdge-MX multispectral camera, by comparing the radiometric data with an independent hyperspectral sensor having NIST-traceable calibration quality. The comaprison showed that radiance from RedEdge-MX is lower than that of TriOS RAMSES by 5 to 16% depending on the bands, and the irradiance from RedEdge-MX is also lower than RAMSES by 1~20%. The correction coefficients for RedEdge-MX alculated through the 1-st and the 3-rd order regression analysis were presented as a result of the study.

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR 기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.187-192
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

Ground-based Remote Sensing Technology for Precision Farming - Calibration of Image-based Data to Reflectance -

  • Shin B.S.;Zhang Q.;Han S.;Noh H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.

  • PDF

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF