• Title/Summary/Keyword: multiscale

Search Result 468, Processing Time 0.027 seconds

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance (Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구)

  • Shin, Hyunseong;Yang, Seunghwa;Yu, Suyoung;Chang, Seongmin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • In this study, a sequential multiscale homogenization method to characterize the effective thermal conductivity of nano particulate polymer nanocomposites is proposed through a molecular dynamics(MD) simulations and a finite element-based homogenization method. The thermal conductivity of the nanocomposites embedding different-sized nanoparticles at a fixed volume fraction of 5.8% are obtained from MD simulations. Due to the Kapitza thermal resistance, the thermal conductivity of the nanocomposites decreases as the size of the embedded nanoparticle decreases. In order to describe the nanoparticle size effect using the homogenization method with accuracy, the Kapitza interface in which the temperature discontinuity condition appears and the effective interphase zone formed by highly densified matrix polymer are modeled as independent phases that constitutes the nanocomposites microstructure, thus, the overall nanocomposites domain is modeled as a four-phase structure consists of the nanoparticle, Kapitza interface, effective interphase, and polymer matrix. The thermal conductivity of the effective interphase is inversely predicted from the thermal conductivity of the nanocomposites through the multiscale homogenization method, then, exponentially fitted to a function of the particle radius. Using the multiscale homogenization method, the thermal conductivities of the nanocomposites at various particle radii and volume fractions are obtained, and parametric studies are conducted to examine the effect of the effective interphase on the overall thermal conductivity of the nanocomposites.

Deterioration of tensile behavior of concrete exposed to artificial acid rain environment

  • Fan, Y.F.;Hu, Z.Q.;Luan, H.Y.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2012
  • This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

Multiscale Stress Analysis of Palladium/Carbon Fiber Composites for the Hydrogen High Pressure Vessel (수소고압저장용기용 팔라듐 첨가 탄소섬유복합재에 대한 멀티스케일 응력해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. The purpose of this study is to verify the validity of using palladium particles in carbon/fiber composites by multi-scale analysis. The palladium is a material for itself to detect leaking hydrogen by using the property of adsorbing hydrogen. The macroscopic model material properties used in this study are homogeneous material properties from microstructure. Homogenized material properties that are calculated from periodic boundary conditions in the microscopic representative volume element model of each macroscopic analysis model. In this study, three macroscopic models were used : carbon fiber/epoxy, carbon fiber/palladium, palladium/epoxy. As a result, adding palladium to carbon/epoxy composite is not a problem in terms of strength.

New Matching Scheme for Panorama Image: A Simulation Study

  • Kim, Jeong-Seok;Chung, Sung-Taek;Hong, In-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.127-131
    • /
    • 2007
  • This paper presents a new matching scheme for creating a single panoramic image from a sequence of partially overlapping images of the same object or scene. This matching scheme is based directly on the searching algorithm, using a multiscale approach to the Hooke-Jeeves algorithm. Matching scheme evaluation was performed using simulated pattern images. The proposed matching scheme reveals good results and could be effectively applied to real ultrasound applications.