• Title/Summary/Keyword: multiple-cause model

Search Result 193, Processing Time 0.023 seconds

Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares (부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단)

  • 이기백;신동일;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.

STATISTICAL PROCESS CONTROL FOR MULTIPLE DEPENDENT SUBPROCESSES

  • Yang Su-Fen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.217-224
    • /
    • 1998
  • A cost model, controlling multiple dependent subprocesses with minimum cost, is derived by renewal theory approach. The optimal multiple cause-selecting control chart and individual Y control chart are thus constructed to monitor the specific product quality and overall product quality contributed by the multiple dependent subprocesses. They may be used to maintain the process with minimum cost and effectively distinguish which component of the subprocesses is out of control. The optimal design parameters of the proposed control charts can be determined by minimizing the cost model using simple grid search method, An example is given to illustrate the application of the optimal multiple cause-selecting control chart and individual Y control chart.

  • PDF

A Study on the Derivation of the Unit Hydrograph using Multiple Regression Model (다중회귀모형으로 추정된 모수에 의한 최적단위유량도의 유도에 관한 연구)

  • 이종남;김채원;황창현
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.93-100
    • /
    • 1992
  • A study on the Derivation of the Unit Hydrograph using Multiple Regression Moe이. The purpose of this study is to deriver an optimal unit hydrograph suing the multiple regression model, particularly when only small amount of data is available. The presence of multicollinearity among the input data can cause serious oscillations in the derivation of the unit hydrograph. In this case, the oscillations in the unit hydrograph ordinate are eliminated by combining the data. The data used in this study are based upon the collection and arrangement of rainfall-runoff data(1977-1989) at the Soyang-river Dam site. When the matrix X is the rainfall series, the condition number and the reciprocal of the minimum eigenvalue of XTX are calculated by the Jacobi an method, and are compared with the oscillation in the unit hydrograph. The optimal unit hydrograph is derived by combining the numerous rainfall-runoff data. The conclusions are as follows; 1)The oscillations in the derived unit hydrograph are reduced by combining the data from each flood event. 2) The reciprocals of the minimum eigen\value of XTX, 1/k and the condition number CN are increased when the oscillations are active in the derived unit hydrograph. 3)The parameter estimates are validated by extending the model to the Soyang river Dam site with elimination of the autocorrelation in the disturbances. Finally, this paper illustrates the application of the multiple regression model to drive an optimal unit hydrograph dealing with the multicollinearity and the autocorrelation which cause some problems.

  • PDF

Development of a Multiple Linear Regression Model to Analyze Traffic Volume Error Factors in Radar Detectors

  • Kim, Do Hoon;Kim, Eung Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.253-263
    • /
    • 2021
  • Traffic data collected using advanced equipment are highly valuable for traffic planning and efficient road operation. However, there is a problem regarding the reliability of the analysis results due to equipment defects, errors in the data aggregation process, and missing data. Unlike other detectors installed for each vehicle lane, radar detectors can yield different error types because they detect all traffic volume in multilane two-way roads via a single installation external to the roadway. For the traffic data of a radar detector to be representative of reliable data, the error factors of the radar detector must be analyzed. This study presents a field survey of variables that may cause errors in traffic volume collection by targeting the points where radar detectors are installed. Video traffic data are used to determine the errors in traffic measured by a radar detector. This study establishes three types of radar detector traffic errors, i.e., artificial, mechanical, and complex errors. Among these types, it is difficult to determine the cause of the errors due to several complex factors. To solve this problem, this study developed a radar detector traffic volume error analysis model using a multiple linear regression model. The results indicate that the characteristics of the detector, road facilities, geometry, and other traffic environment factors affect errors in traffic volume detection.

Analysis of the cause-specific proportional hazards model with missing covariates (누락된 공변량을 가진 원인별 비례위험모형의 분석)

  • Minjung Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.225-237
    • /
    • 2024
  • In the analysis of competing risks data, some of covariates may not be fully observed for some subjects. In such cases, excluding subjects with missing covariate values from the analysis may result in biased estimates and loss of efficiency. In this paper, we studied multiple imputation and the augmented inverse probability weighting method for regression parameter estimation in the cause-specific proportional hazards model with missing covariates. The performance of estimators obtained from multiple imputation and the augmented inverse probability weighting method is evaluated by simulation studies, which show that those methods perform well. Multiple imputation and the augmented inverse probability weighting method were applied to investigate significant risk factors for the risk of death from breast cancer and from other causes for breast cancer data with missing values for tumor size obtained from the Prostate, Lung, Colorectal, and Ovarian Cancer Screen Trial Study. Under the cause-specific proportional hazards model, the methods show that race, marital status, stage, grade, and tumor size are significant risk factors for breast cancer mortality, and stage has the greatest effect on increasing the risk of breast cancer death. Age at diagnosis and tumor size have significant effects on increasing the risk of other-cause death.

Economic Adjustment Design For $\bar{X}$ Control Chart: A Markov Chain Approach

  • Yang, Su-Fen
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.136-144
    • /
    • 2001
  • The Markov Chain approach is used to develop an economic adjustment model of a process whose quality can be affected by a single special cause, resulting in changes of the process mean by incorrect adjustment of the process when it is operating according to its capability. The $\bar{X}$ control chart is thus used to signal the special cause. It is demonstrated that the expressions for the expected cycle time and the expected cycle cost are easier to obtain by the proposed approach than by adopting that in Collani, Saniga and Weigang (1994). Furthermore, this approach would be easily extended to derive the expected cycle cost and the expected cycle time for the case of multiple special causes or multiple control charts. A numerical example illustrates the proposed method and its application.

  • PDF

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

An Analysis of Multiple-Vehicle Accidents on Freeways Using Multinomial Logit Model (다항로짓모형을 이용한 고속도로 다중추돌사고 특성 분석)

  • Jeon, Hyeonmyeong;Kim, Jinhee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • The aim of this study is to analyze effects of factors on the number of vehicles involved in traffic accidents on freeway sections. In previous studies about traffic accident severity, the analysis of accidents involving multiple vehicles was insufficient. However, multiple-vehicle accidents are likely to cause casualties and are the main reasons increasing accident duration and social costs. In this study, the number of vehicles involved in an accident was interpreted as the result of the accident, not as the cause of the accident, and the impacts of each accident factor were analyzed using a multinomial logit model. The results indicate that multiple-vehicle accidents are mainly related to following factors: nighttime, driver's faults, obstacles on the road, a downhill slope, heavy vehicles, and freeway mainline sections including tunnels and bridges.

Reliability Modeling and Analysis for a Unit with Multiple Causes of Failure (다수의 고장 원인을 갖는 기기의 신뢰성 모형화 및 분석)

  • Baek, Sang-Yeop;Lim, Tae-Jin;Lie, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.609-628
    • /
    • 1995
  • This paper presents a reliability model and a data-analytic procedure for a repairable unit subject to failures due to multiple non-identifiable causes. We regard a failure cause as a state and assume the life distribution for each cause to be exponential. Then we represent the dependency among the causes by a Markov switching model(MSM) and estimate the transition probabilities and failure rates by maximum likelihood(ML) method. The failure data are incomplete due to masked causes of failures. We propose a specific version of EM(expectation and maximization) algorithm for finding maximum likelihood estimator(MLE) under this situation. We also develop statistical procedures for determining the number of significant states and for testing independency between state transitions. Our model requires only the successive failure times of a unit to perform the statistical analysis. It works well even when the causes of failures are fully masked, which overcomes the major deficiency of competing risk models. It does not require the assumption of stationarity or independency which is essential in mixture models. The stationary probabilities of states can be easily calculated from the transition probabilities estimated in our model, so it covers mixture models in general. The results of simulations show the consistency of estimation and accuracy gradually increasing according to the difference of failure rates and the frequency of transitions among the states.

  • PDF