• Title/Summary/Keyword: multiple water sources

Search Result 52, Processing Time 0.027 seconds

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.

Application of a Decision Support System for Total Maximum Daily Loads (오염총량관리를 위한 의사결정 지원시스템 적용)

  • Lee, Hye-Young;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.151-156
    • /
    • 2004
  • A decision support system, Watershed Analysis Risk Management Framework(WARMF), was applied to the Kyungan Stream watershed, a tributary of Lake Paldang, for calculation of total maximum daily loads(TMDL). The WARMF system was developed by Systech Engineering, USA, and has been successfully used in several watersheds, for TMDL studies. The study area was divided into 14 sub-basins, based on digital elevation model(DEM). The integrated watershed and stream model of WARMF was validated by flow and BOD data measured during the year of 1999. There were reasonable agreements between model results and field data, both in water flow and BOD. The validated Kyungan WARMF was extensively utilized to study the quantitative relationship between waste loads and receiving water quality. Based on TMDL guideline at Paldang Lake and Kyungan Stream, the water quality criterion were set to be 3.0mg/L, 3.5mg/L, and 4.0mg/L at the watershed outlet. The allowable waste loads of BOD, both from point and non-point sources, were determined at each water quality criterion. From this study, it was concluded that the WARMF provided several advantages over the conventional application of watershed and stream models for TMDL study, such as time variable simulations, multiple possible soutions, and reduction loads for goal water quality, etc.

Operating characteristics of a heat pipe with two heat sources (두개의 열원이 부착된 히트파이프의 동작 특성)

  • Park, Jong-Heung;No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.303-315
    • /
    • 1998
  • Numerical and experimental studies on a heat pipe with two heat sources have been performed to investigate the operating characteristics. Numerical analysis was performed based on the cylindrical two-dimensional incompressible laminar flow for the vapor space and the conjugate heat transfer for the entire heat pipe. Experimental study with a 0.45 m length copper-water heat pipe was also performed to validate the numerical modeling for the heat input range from 29 W to 47 W on each heater. As results, the temperature profiles at the outer wall for the single active heat source as well as the temperature profiles for the switching operation between two heat sources are suggested. Due to the axial conduction, it is found that the temperature drop between the evaporator and the condenser appears small when the heat source closer to the condenser is turned on. For the switching operation in the present study, the transient time is about 700s and the temperatures at the locations of both heat source are same in 130s after switching.

Antimicrobial Resistance Characteristics of Gram-Negative Bacteria Isolated from Inland Pollution Sources in the Drainage Basin of Iwon-myeon (Taean-gun), South Korea (태안군 이원면 육상오염원 배출수에서 분리한 그람음성균의 항생제 내성 특성)

  • Park, Bo Mi;Kim, Min Ju;Jeong, Yeon Gyeom;Park, Jin Il;Yu, Hong Sik;Oh, Eun Gyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.377-387
    • /
    • 2021
  • Fecal contamination levels of discharge water from inland pollution sources were investigated in Iwon-myeon (Taean-gun), South Korea. Gram-negative bacteria were isolated during the investigation and the antimicrobial resistance patterns of the isolates were examined to estimate their impact on the coastal environment. The ranges of total coliform and fecal coliform of 12 samples from four major inland pollution sources were 79-490,000 MPN/100 mL and 2.0-490,000 MPN/100 mL, respectively, with the highest level of fecal contamination at Station No. 3. A total of 137 strains (14 genus) were isolated, of which 86 strains (62.8%) were Enterobacteriaceae. The identified isolates were as follows: Pseudomonas spp. (35 strains), Klebsiella spp. (20 strains), Serratia spp. (20 strains), and Escherichia spp. (19 strains). The isolated Gram-negative bacteria showed the highest antimicrobial resistance to ampicillin (81.8%), followed by amoxicillin/clavulanic acid (64.2%), ceftiofur (61.3%), and cefoxitin (59.1%). Antimicrobials in which less than 10% of isolates showed antimicrobial resistance were ciprofloxacin (3.6%) and gentamicin (2.2%). Resistance to one or more antimicrobials was observed in 121 strains (88.3%) and 84 strains (61.3%) showed a tendency for multiple antimicrobial resistance.

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area (과수재배지 비점오염부하량 추정회귀식 비교 검증)

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Antimicrobial Resistance Patterns of Escherichia coli Isolated from Discharged Water from Inland Pollution Sources in the Hansan-Geojeman and Jaranman-Saryangdo Areas of Korea (한산거제만 및 자란만사량도 해역 육상오염원 배출수에서 분리한 대장균의 항균제 내성 패턴)

  • Park, Kunbawui;Kim, Song Hee;Ham, In Tae;Ryu, A Ra;Kwon, Ji Young;Kim, Ji Hoe;Yu, Hong Sik;Lee, Hee Jung;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • We investigated patterns of antimicrobial resistance in Escherichia coli isolated from the water discharged from inland pollution sources in the Hansan-Geojeman and Jaranman-Saryangdo areas of Korea. A total of 217 strains of E. coli were isolated from 23 point-sources. These strains were tested for their susceptibility to 16 antimicrobial agents used in Korea for medical or veterinary therapy. The highest level of antibiotic resistance among the isolated strains was to tetracycline 10.6%, followed by ampicillin (3.2%), nalidixic acid (2.8%), rifampin (1.8%), trimethoprim (1.8%), trimethoprim/sulfamethoxazole (1.8%), chloramphenicol (1.4%), streptomycin (1.4%), cephalothin (0.5%) and gentamicin (0.5%). Resistance to at least one antimicrobial agent was present in 17.1% of the E. coli isolates. Only four of the isolated strains of E. coli showed multiple antibiotic resistance, which is defined as resistance to more than four antibiotics.

Simulation of multiple intake sources for sand dam in Chuncheon (춘천 샌드댐을 위한 다중 유입원 모의실험)

  • Kim, Il Hwan;Kim, Min-Gyu;Chang, Sun Woo;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.448-448
    • /
    • 2022
  • 기후변화와 산업의 발달로 필요한 수자원의 양은 증가하고 있지만 수자원의 양은 줄고 있어 가뭄 피해에 대해서 더욱 취약해지고 있다. 특히, 우리나라의 물 공급 소외 지역 중 산간지역은 계곡수 등을 이용한 소규모 용수 공급 시설을 이용하고 있다. 산간지역은 지형적 특성상 수자원의 저류가 힘들어 가뭄 피해에 더욱 취약하다. 산간지역에 적용할 수 있는 수자원 공급방안 중 지형의 경사를 이용하여 샌드댐을 설치하여 수자원을 확보하는 방안은 이에 대한 하나의 대안이다. 본 연구에서는 연구지역인 춘천시 물로리 현장을 모사한 샌드댐 물리 모형을 구축하였다. 샌드댐 물리 모형의 구축은 현장의 경사에 대비하여 1/15 규모로 축소하였으며, 현장의 유하 순서와 동일하게 구성하였다. 춘천 물로리 현장에서는 기존 취수원에서 샌드댐으로 유입되는 수량과 배후 지하수에서 유입되는 수량으로 나누어 샌드댐 모의를 진행하였다. 샌드댐을 이용한 산간지역의 물공급과 운영 방안을 통해 물 공급 소외지역에서 활용가능한 대안을 제시하였다.

  • PDF

APPLICATION OF MERGED MICROWAVE GEOPHYSICAL OCEAN PRODUCTS TO CLIMATE RESEARCH AND NEAR-REAL-TIME ANALYSIS

  • Wentz, Frank J.;Kim, Seung-Bum;Smith, Deborah K.;Gentemann, Chelle
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.150-152
    • /
    • 2006
  • The DISCOVER Project (${\underline{D}}istributed$ ${\underline{I}}nformation$ ${\underline{S}}ervices$ for ${\underline{C}}limate$ and ${\underline{O}}cean$ products and ${\underline{V}}isualizations$ for ${\underline{E}}arth$ ${\underline{R}}esearch$) is a NASA funded Earth Science REASoN project that strives to provide highly accurate, carefully calibrated, long-term climate data records and near-real-time ocean products suitable for the most demanding Earth research applications via easy-to-use display and data access tools. A key element of DISCOVER is the merging of data from the multiple sensors on multiple platforms into geophysical data sets consistent in both time and space. The project is a follow-on to the SSM/I Pathfinder and Passive Microwave ESIP projects which pioneered the simultaneous retrieval of sea surface temperature, surface wind speed, columnar water vapor, cloud liquid water content, and rain rate from SSM/I and TMI observations. The ocean products available through DISCOVER are derived from multi-sensor observations combined into daily products and a consistent multi-decadal climate time series. The DISCOVER team has a strong track record in identifying and removing unexpected sources of systematic error in radiometric measurements, including misspecification of SSM/I pointing geometry, the slightly emissive TMI antenna, and problems with the hot calibration source on AMSR-E. This in-depth experience with inter-calibration is absolutely essential for achieving our objective of merging multi-sensor observations into consistent data sets. Extreme care in satellite inter-calibration and commonality of geophysical algorithms is applied to all sensors. This presentation will introduce the DISCOVER products currently available from the web site, http://www.discover-earth.org and provide examples of the scientific application of both the diurnally corrected optimally interpolated global sea surface temperature product and the 4x-daily global microwave water vapor product.

  • PDF

A Study on the Performance Evaluation Index of Multi-Water Resources Connection and Continuous Utilization in Micro Water Grid (마이크로 워터 그리드에서 다중수원 연계·연속 활용 성능평가지표에 관한 연구)

  • Chae, Soo-Kwon;Lee, Sang-Hoon;Ah, Hong-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.556-567
    • /
    • 2019
  • As the number of skyscrapers in micro water grid units such as green building and smart building is increasing in the world, the green building certification system is being implemented to solve problems such as increased demand for water resources and energy. However, researches on the use of sustainable water resources like water reuse and water conservation through linkage and continuous use of water resources, while the power and energy sectors are actively conducting R&D projects in the green building certification system on the micro water grid level. Therefore, this paper analyzes the characteristics and limitations of the water resources sector for the continuous utilization of multiple water sources in the green building certification system, due to the inadequate consideration of sustainability. Then investigates whether various water resources such as constants, nature, and alternative water resources are continuously used in and out of the green building or smart building and complex in the micro water grid unit to suggest evaluation methods and performance evaluation standards.