• Title/Summary/Keyword: multiple targets

Search Result 390, Processing Time 0.027 seconds

Development of Displacement Measurement System of Structures Using Image Processing Techniques (영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발)

  • 김성욱;김상봉;서진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

Target classification in indoor environments using multiple reflections of a SONAR sensor (초음파의 다중반사 특성을 이용한 실내공간에서의 목표물 인식에 관한 연구)

  • 류동연;박성기;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1738-1741
    • /
    • 1997
  • This paper addresses the issue fo target classification and localization with a SONAR for mobiler robot indoor navigation. In particular, multiple refetions of SONAR sound are used actively and interntionally. As for the SONAR sensor, the multiple reflection has been generally considered as one of the noisy phenomena, which is inevitable in the indoor environments. However, these multiple reflections can be a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. This paper develops a new SONAR sensor module with a reflection plane which can actively create the multiple refection. This paper also intends to suggest a new target classification emthod which uses the multiple refectiions. We approximate the world as being two dimensional and assume that the targets consisting of the indoor environment are pland, corner, and edge. Multiple reflection paths of an acoustic bean by a SONAR are analyzed, by simulations and the patterns of the TOPs (Time Of Flight) and angles of multiple reflections from each target are also analyzed. In addition, a new algorithm for target classification and localization is proposed.

  • PDF

A Model for Determining Optimal Operating Time of Aircrafts Attacking Multiple Targets (다수 표적을 공격하는 편대항공기의 최적작전시간 결정 모형)

  • Kim Yong-Bok;Min Gye-Ryo
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-73
    • /
    • 1992
  • Up to the present, the operating time has been studied on only a single aircraft attacking a single target or multiple targets under enemy threats. This study is to determine optimal operating time and appropriate size of aircrafts attacking multiple targets. Measures of mission effectiveness is defined through derivation of the probability of the various events associated with operating. By using these measures, the expected benefit of operating and the expected cost of operating are generated as a function of time. To formulate operating time determination model, the expected gain of operating is defined as the difference between the expected benefit of operating and the expected cost of operating. The model can be used to determine optimal operating time which maximizes the expected gain of operating, and can be used as the basis for determining the appropriate size of aircrafts.

  • PDF

Multiple Target Position Tracking Algorithm for Linear Array in the Near Field (선배열 센서를 이용한 근거리 다중 표적 위치 추적 알고리즘)

  • Hwang Soo-Bok;Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.294-300
    • /
    • 2005
  • Generally, traditional approaches to track the target position are to estimate ranges and bearings by 2-D MUSIC (MUltiple 519na1 Classification) method. and to associate estimates of 2-D MUSIC made at different time points with the right targets by JPDA (Joint Probabilistic Data Association) filter in the near field. However, the disadvantages of these approaches are that these have the data association Problem in tracking multiple targets. and that these require the heavy computational load in estimating a 2-D range/bearing spectrum. In case multiple targets are adjacent. the tracking performance degrades seriously because the estimate of each target's Position has a large error. In this paper, we proposed a new tracking algorithm using Position innovations extracted from the senor output covariance matrix in the near field. The proposed algorithm is demonstrated by the computer simulations dealing with the tracking of multiple closing and crossing targets.

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

Development of a Ubiquitous Vision System for Location-awareness of Multiple Targets by a Matching Technique for the Identity of a Target;a New Approach

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.68-73
    • /
    • 2005
  • Various techniques have been proposed for detection and tracking of targets in order to develop a real-world computer vision system, e.g., visual surveillance systems, intelligent transport systems (ITSs), and so forth. Especially, the idea of distributed vision system is required to realize these techniques in a wide-spread area. In this paper, we develop a ubiquitous vision system for location-awareness of multiple targets. Here, each vision sensor that the system is composed of can perform exact segmentation for a target by color and motion information, and visual tracking for multiple targets in real-time. We construct the ubiquitous vision system as the multiagent system by regarding each vision sensor as the agent (the vision agent). Therefore, we solve matching problem for the identity of a target as handover by protocol-based approach. We propose the identified contract net (ICN) protocol for the approach. The ICN protocol not only is independent of the number of vision agents but also doesn't need calibration between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. We adapt the ICN protocol in our ubiquitous vision system that we construct in order to make an experiment. Our ubiquitous vision system shows us reliable results and the ICN protocol is successfully operated through several experiments.

  • PDF

A Study on Fuzzy Interacting Multiple Model Algorithm for Maneuvering Target Tracking (기동 표적 추적을 위한 퍼지 IMM 알고리즘에 관한 연구)

  • Kim Hyun-Sik;Kim Jin-Soek;Hwang Soo-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.5-12
    • /
    • 2004
  • The tracking algorithm based on the interacting multiple model(IMM) requires a considerable number of sub-models for the various maneuvering targets in order to have a good performance. But it is not feasible to use the nm algorithm in the real system because of the computational burden. Therefore, we need an algorithm which requires less computing resources while maintaining a good performance. In this paper, we propose a fuzzy interacting multiple model algorithm(FIMMA) for the tracking of maneuvering targets, which uses a minimal number of sub-models by considering the maneuvering properties and adjusts the mode transition probabilities by using the mode probability as a fuzzy input. In order to verify the performance of FIMMA, the developed algorithm is applied to the tracking of i borne targets. Simulation results show that the FIMMA is very effective in the tracking of maneuvering targets.

High Frequency Acoustic Scattering Analysis of Underwater Target (수중표적에 대한 고주파수 음향산란 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jong-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.528-533
    • /
    • 2005
  • A mono-static high frequency acoustic target strength analysis scheme was developed for underwater targets, based on the far-field Kirchhoff approximation. Au adaptive triangular beam method and a concept of virtual surface were adopted for considering the effect of hidden surfaces and multiple reflections of an underwater target, respectively. A test of a simple target showed that the suggested hidden surface removal scheme is valid. Then some numerical analyses, for several underwater targets, were carried out; (1) for several simple underwater targets, like sphere, square plate, cylinder, trihedral corner reflector, and (2) for a generic submarine model, The former was exactly coincident with the theoretical results including beam patterns versus azimuth angles, and the latter suggested that multiple reflections have to be considered to estimate more accurate target strength of underwater targets.

An Analysis on the Identification Rate of Detection System Using Non-Homogeneous Discrete Absorbing Markov Chains (비 동질성 이산시간 흡수마코프체인을 활용한 탐지체계의 식별률 분석에 관한 연구)

  • Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.2
    • /
    • pp.31-42
    • /
    • 2015
  • The purpose of airborne radars is to detect and identify approaching targets as early as possible. If the targets are identified as enemies, detection systems must provide defense systems with information of the targets to counter. Though many previous studies based on the detection theory of the target have shown various ways to derive detection probability of each radar, optimal arrangement of radars for effective detection, and determination of the search pattern, they did not reflect the fact that most military radar sites run multiple radars in order to increase the accuracy of identifications by radars. In this paper, we propose a model to analyze the probability of identification generated by the multiple radars using non-homogeneous absorbing markov chains. Our results are expected to help the military commanders counter the enemy targets effectively by using radars in a way to maximize the identification rate of targets.