• Title/Summary/Keyword: multiple target tracking

Search Result 216, Processing Time 0.02 seconds

IMM Method Using Kalman Filter with Fuzzy Gain (퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

Multi-Sensor Multi-Target Passive Locating and Tracking

  • Liu, Mei;Xu, Nuo;Li, Haihao
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.200-207
    • /
    • 2007
  • The passive direction finding cross localization method is widely adopted in passive tracking, therefore there will exist masses of false intersection points. Eliminating these false intersection points correctly and quickly is a key technique in passive localization. A new method is proposed for passive locating and tracking multi-jammer target in this paper. It not only solves the difficulty of determining the number of targets when masses of false intersection points existing, but also solves the initialization problem of elastic network. Thus this method solves the problem of multi-jammer target correlation and the elimination of static false intersection points. The method which dynamically establishes multiple hypothesis trajectory trees solves the problem of eliminating the remaining false intersection points. Simulation results show that computational burden of the method is lower, the elastic network can more quickly find all or most of the targets and have a more probability of locking the real targets. This method can eliminate more false intersection points.

On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter (Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘)

  • 김경택;최대범;안병하;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF

Adaptive Fuzzy IMM Algorithm for Position Tracking of Maneuvering Target (기동표적의 위치추적을 위한 적응 퍼지 IMM 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.855-861
    • /
    • 2007
  • In real system application, the IMM-based position tracking algorithm requires robust performance, less computing resources and easy design procedure with respect to the uncertain target maneuvering, To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the well-defined basis sub-models and well-adjusted mode transition probabilities (MTPs), is proposed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application of the IMM-based position tracking algorithm.

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking (다중 레이더 추적을 위한 IMM 모드 천이 확률의 동적 결정)

  • Jeon, Dae-Keun;Eun, Yeon-Ju;Ko, Hyun;Yeom, Chan-Hong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • A method is presented of dynamic determination of mode transition probability for IMM in order to improve the accuracy performance of maneuvering target tracking for air traffic control surveillance processing system under multiple radar environment. It is shown that dynamic determination of mode transition probability based on the time intervals between the data input from multiple radars gives the optimized performance in terms of position estimation accuracy.

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation (지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF

Implementation of Moving Object Recognition based on Deep Learning (딥러닝을 통한 움직이는 객체 검출 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2018
  • Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.

A DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the states of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.