• Title/Summary/Keyword: multiple symbol differential detection

Search Result 22, Processing Time 0.015 seconds

A Performance Analysis of DF-DPD and DPD-RGPR (DF-DPD와 DPD-RGPR에 대한 성능 분석)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a numerical analysis to prove that the performance of the differential phase detections (DPDs) with the decision feedback, such as the decision feedback DPD (DF-DPD) and the DPD with recursively generated phase reference (DPD-RGPR), approach the performance of the coherent detection with differential decoding. The conventional differential phase detection for M-ary DPSK can make the receiver architecture simple, while it can make the bit-error rate (BER) performance poor because of the previous noisy phase as a reference phase. To improve the BER performance of the conventional differential detection, multiple symbol differential detection methods, including DF-DPD and DPD-RGPR, have been proposed. However, the studies on the analysis and on the comparison of these methods have been little performed. Then, this paper mathematically intends to analyze and compare the performance of the DPDs with the decision feedback. The analysis results show that the DPDs with the decision feedback can have the performance equal to that of the coherent detection with differential decoding and be available for the noncoherent detection in the improved performance. Considering the hardware complexity, the DPD RGPR with the simple detection process by using the recursively generated phase reference can be more simply implemented than the DF-DPD based on the architecture whose complexity increases according to the increasing detection length.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.