• Title/Summary/Keyword: multiple obstacle avoidance

Search Result 46, Processing Time 0.022 seconds

Implementation of the Obstacle Avoidance Algorithm of Autonomous Mobile Robots by Clustering (클러스터링에 의한 자율 이동 로봇의 장애물 회피 알고리즘)

  • 김장현;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.504-510
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "obstacle avoidance" behavior of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for obstacle avoidance are generated from clustering the input-output data obtained from the obstacle avoidance algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the obstacle avoidance behavior.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

A Study on the Method of Estimating the Baseline Risk Level of Multiple Obstacles situation Avoidance Based on COLREG for each Obstacles (다중 장애물 상황에서 COLREG를 바탕으로 장애물 회피의 기초 위험도 산정 방법에 관한 연구)

  • Kim, Dae-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.195-196
    • /
    • 2019
  • Studied for multiple obstacle avoidance algorithm based on COLREG for autonomous navigation vessel's safety navigation. By used VECTOR value of external obstacle provided by RADAR, CPA and TCPA of each obstacle are analyzed, and the obstacle is classified based on the value, the risk level is calculated considering multiple obstacle avoidance situations, and the avoidance action is applied to secure minimum safety situation.

  • PDF

A Study on Orientation and Position Control of Mobile Robot Based on Multi-Sensors Fusion for Implimentation of Smart FA (스마트팩토리 실현을 위한 다중센서기반 모바일로봇의 위치 및 자세제어에 관한 연구)

  • Dong, G.H;Kim, D.B.;Kim, H.J;Kim, S.H;Baek, Y.T;Han, S.H
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.209-218
    • /
    • 2019
  • This study proposes a new approach to Control the Orientation and position based on obstacle avoidance technology by multi sensors fusion and autonomous travelling control of mobile robot system for implimentation of Smart FA. The important focus is to control mobile robot based on by the multiple sensor module for autonomous travelling and obstacle avoidance of proposed mobile robot system, and the multiple sensor module is consit with sonar sensors, psd sensors, color recognition sensors, and position recognition sensors. Especially, it is proposed two points for the real time implementation of autonomous travelling control of mobile robot in limited manufacturing environments. One is on the development of the travelling trajectory control algorithm which obtain accurate and fast in considering any constraints. such as uncertain nonlinear dynamic effects. The other is on the real time implementation of obstacle avoidance and autonomous travelling control of mobile robot based on multiple sensors. The reliability of this study has been illustrated by the computer simulation and experiments for autonomous travelling control and obstacle avoidance.

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.

Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots (포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발)

  • 이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot (실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발)

  • Kim, Sun-Do;Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

A Study on the Obstacle Avoidance and Path Planning Algorithm of Multiple Mobile Robot (다중이동로봇의 장애물 회피 및 경로계획 알고리즘에 관한 연구)

  • 박경진;이기성;이종수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.31-34
    • /
    • 2000
  • In this paper, we design an optimal path for multiple mobile robots. For this purpose, we propose a new method of path planning for multiple mobile robots in dynamic environment. First, every mobile robot searches a global path using a distance transform algorithm. Then we put subgoals at crooked path points and optimize them. And finally to obtain an optimal on-line local path, ever)r mobile robot searches a new path with static and dynamic obstacle avoidance.

  • PDF