• Title/Summary/Keyword: multiple linear regression(MLR)

Search Result 126, Processing Time 0.024 seconds

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

Determination of Research Octane Number using NIR Spectral Data and Ridge Regression

  • Jeong, Ho Il;Lee, Hye Seon;Jeon, Ji Hyeok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • Ridge regression is compared with multiple linear regression (MLR) for determination of Research Octane Number (RON) when the baseline and signal-to-noise ratio are varied. MLR analysis of near-infrared (NIR) spectroscopic data usually encounters a collinearity problem, which adversely affects long-term prediction performance. The collinearity problem can be eliminated or greatly improved by using ridge regression, which is a biased estimation method. To evaluate the robustness of each calibration, the calibration models developed by both calibration methods were used to predict RONs of gasoline spectra in which the baseline and signal-to-noise ratio were varied. The prediction results of a ridge calibration model showed more stable prediction performance as compared to that of MLR, especially when the spectral baselines were varied. . In conclusion, ridge regression is shown to be a viable method for calibration of RON with the NIR data when only a few wavelengths are available such as hand-carry device using a few diodes.

Development of the Algorithm for Optimizing Wavelength Selection in Multiple Linear Regression

  • Hoeil Chung
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • A convenient algorithm for optimizing wavelength selection in multiple linear regression (MLR) has been developed. MOP (MLP Optimization Program) has been developed to test all possible MLR calibration models in a given spectral range and finally find an optimal MLR model with external validation capability. MOP generates all calibration models from all possible combinations of wavelength, and simultaneously calculates SEC (Standard Error of Calibration) and SEV (Standard Error of Validation) by predicting samples in a validation data set. Finally, with determined SEC and SEV, it calculates another parameter called SAD (Sum of SEC, SEV, and Absolute Difference between SEC and SEV: sum(SEC+SEV+Abs(SEC-SEV)). SAD is an useful parameter to find an optimal calibration model without over-fitting by simultaneously evaluating SEC, SEV, and difference of error between calibration and validation. The calibration model corresponding to the smallest SAD value is chosen as an optimum because the errors in both calibration and validation are minimal as well as similar in scale. To evaluate the capability of MOP, the determination of benzene content in unleaded gasoline has been examined. MOP successfully found the optimal calibration model and showed the better calibration and independent prediction performance compared to conventional MLR calibration.

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (I) - Multiple Linear Regression Models - (근적외선을 이용한 사과의 당도예측 (I) - 다중회귀모델 -)

  • ;W. R. Hruschka;J. A. Abbott;;B. S. Park
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-570
    • /
    • 1998
  • The MLR(Multiple Linear Regression) models to estimate soluble solids content non-destructively were presented to make a selection of optimal photosensor utilized to measure the soluble solids content of apples. Visible and NIR absorbance in the 400 to 2498 nanometer(nm) wavelength region, soluble solids content(sugar content), hardness, and weight were measured for 400 apples(gala). Spectrophotometer with fiber optic probe was utilized for spectrum measurement and digital refractometer was used for soluble solids content. Correlation between absorbance spectrum and soluble solids content was analyzed to pick out the optimal wavelengths and to develop corresponding prediction model by means of MLR. For the coefficient of determination($R^2$) to be over 0.92, the MLR models out of the original absorbance were built based on 7 wavelengths of 992, 904, 1096, 1032, 880, 824, 1048nm, and the ones of the second derivative absorbance based on 5 wavelengths of 784, 1056, 992, 808, 872nm. The best model of the second derivative absorbance spectrum had $R^2$=0.91, bias= -0.02bx, SEP=0.28bx for unknown samples.

  • PDF

Prediction of lightweight concrete strength by categorized regression, MLR and ANN

  • Tavakkol, S.;Alapour, F.;Kazemian, A.;Hasaninejad, A.;Ghanbari, A.;Ramezanianpour, A.A.
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.151-167
    • /
    • 2013
  • Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.

Soil Fertility Evaluation by Application of Geographic Information System for Tobacco Fields (지리정보시스템을 활용한 연초재배 토양의 비옥도 평가)

  • 석영선;홍순달;안정호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.36-48
    • /
    • 1999
  • Field test was conducted in Chungbuk province to evaluate the soil fertility using landscape and soil attributes by application of geographic information system(GIS) in 48 tobacco fields during 2 years(1996 ; 23 fields, 1997 ; 25 fields). The soil fertility factors and fertilizer effects were estimated by twenty five independent variables including 13 chemical properties and 12 GIS databases. Twenty five independent variables were classified by two groups, 15 quantitative indexes and 10 qualitative indexes and were analyzed by multiple linear regression (MLR) of SAS, REG and GLM models. The estimation model for evaluation of soil fertility and fertilizer effect was made by giving the estimate coefficient for each quantitative index and for each group of qualitative index significantly selected by MLR. Estimation for soil fertility factors and fertilizer effects by independent variables was better by MLR than single regression showing gradually improvement by adding chemical properties, quantitative indexes and qualitative indexes of GIS. Consequently, it is assumed that this approach by MLR with quantitative and qualitative indexes was available as an evaluation model of soil fertility and recommendation of optimum fertilization for tobacco field.

  • PDF

SELECTION OF WAELENGTH REGION FOR PLS BRIX CALIBRATION OF MANGO BY MLR METHOD

  • Sarawong, Sirinnapa;Sornsrivichai, Jinda;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1625-1625
    • /
    • 2001
  • The calibration equations for Brix value determination of intact mango were developed using the NIR spectra in a short wavelength region from 700 to 1100 nm. Multiple linear regression (MLR) and partial least square regression (PLS) was used for the calibration. It was found that the best wavelength region for PLS calibration from 900 to 1000 nm was similar to the wavelength region selected by MLR from 906 nm to 996 nm. Both MLR and selected region PLS provided sufficiently accurate prediction equations for Brix determination of intact mango. For MLR, the prediction results were SEP = 0.45 Brix and Bias = -0.04 Brix while PLS prediction results were SEP : 0.46 Brix and Bias = -0.2 Brix. It was concluded that MLR and PLS would have similar abilities in making calibration equation for Brix determination of intact mango if the appropriate wavelengths or wavelength region were selected. The appropriate wavelength region for PLS regression could be assumed by using the wavelength region selected by MLR in place of random selection, The relationship between calibration results of MLR and PLS regression is discussed.

  • PDF