다변량 통계 분석법(Multivariate statistical analysis method)의 대표적 방법인 다중 선형 회귀법(Multiple linear regression. MLR)을 이용하여 2성분계 혼합물의 인화점을 회귀 분석하고 예측하였다. 가연성 물질의 인화점에 대한 예측은 실제 화학 공정 설계에서 화재 및 폭발 위험성을 판단하는 중요한 부분 중의 하나이다. 본 연구에서는 순수 성분의 물성 자료만을 이용하여 2성분계 혼합물의 인화점 실험 자료에 대해 다중 선형 회귀법(MLR)을 수행하였고, 이를 이용하여 새로운 혼합물에 대한 인화점을 예측하였다. 2성분계 혼합물의 인화점에 대한 MLR의 회귀 성능과 새로운 혼합물에 대한 예측 성능을 알아보기 위해, 기존의 인화점 추정 방법인 Raoult의 법칙과 Van Laar식에 의한 추정값과 비교해 보았다.
Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
Earthquakes and Structures
/
제24권6호
/
pp.429-437
/
2023
This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.
Ridge regression is compared with multiple linear regression (MLR) for determination of Research Octane Number (RON) when the baseline and signal-to-noise ratio are varied. MLR analysis of near-infrared (NIR) spectroscopic data usually encounters a collinearity problem, which adversely affects long-term prediction performance. The collinearity problem can be eliminated or greatly improved by using ridge regression, which is a biased estimation method. To evaluate the robustness of each calibration, the calibration models developed by both calibration methods were used to predict RONs of gasoline spectra in which the baseline and signal-to-noise ratio were varied. The prediction results of a ridge calibration model showed more stable prediction performance as compared to that of MLR, especially when the spectral baselines were varied. . In conclusion, ridge regression is shown to be a viable method for calibration of RON with the NIR data when only a few wavelengths are available such as hand-carry device using a few diodes.
A convenient algorithm for optimizing wavelength selection in multiple linear regression (MLR) has been developed. MOP (MLP Optimization Program) has been developed to test all possible MLR calibration models in a given spectral range and finally find an optimal MLR model with external validation capability. MOP generates all calibration models from all possible combinations of wavelength, and simultaneously calculates SEC (Standard Error of Calibration) and SEV (Standard Error of Validation) by predicting samples in a validation data set. Finally, with determined SEC and SEV, it calculates another parameter called SAD (Sum of SEC, SEV, and Absolute Difference between SEC and SEV: sum(SEC+SEV+Abs(SEC-SEV)). SAD is an useful parameter to find an optimal calibration model without over-fitting by simultaneously evaluating SEC, SEV, and difference of error between calibration and validation. The calibration model corresponding to the smallest SAD value is chosen as an optimum because the errors in both calibration and validation are minimal as well as similar in scale. To evaluate the capability of MOP, the determination of benzene content in unleaded gasoline has been examined. MOP successfully found the optimal calibration model and showed the better calibration and independent prediction performance compared to conventional MLR calibration.
NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.
강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역$(110^{\circ}E-145^{\circ}E,\;25^{\circ}N-55^{\circ}N)$의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
The MLR(Multiple Linear Regression) models to estimate soluble solids content non-destructively were presented to make a selection of optimal photosensor utilized to measure the soluble solids content of apples. Visible and NIR absorbance in the 400 to 2498 nanometer(nm) wavelength region, soluble solids content(sugar content), hardness, and weight were measured for 400 apples(gala). Spectrophotometer with fiber optic probe was utilized for spectrum measurement and digital refractometer was used for soluble solids content. Correlation between absorbance spectrum and soluble solids content was analyzed to pick out the optimal wavelengths and to develop corresponding prediction model by means of MLR. For the coefficient of determination($R^2$) to be over 0.92, the MLR models out of the original absorbance were built based on 7 wavelengths of 992, 904, 1096, 1032, 880, 824, 1048nm, and the ones of the second derivative absorbance based on 5 wavelengths of 784, 1056, 992, 808, 872nm. The best model of the second derivative absorbance spectrum had $R^2$=0.91, bias= -0.02bx, SEP=0.28bx for unknown samples.
Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.
Field test was conducted in Chungbuk province to evaluate the soil fertility using landscape and soil attributes by application of geographic information system(GIS) in 48 tobacco fields during 2 years(1996 ; 23 fields, 1997 ; 25 fields). The soil fertility factors and fertilizer effects were estimated by twenty five independent variables including 13 chemical properties and 12 GIS databases. Twenty five independent variables were classified by two groups, 15 quantitative indexes and 10 qualitative indexes and were analyzed by multiple linear regression (MLR) of SAS, REG and GLM models. The estimation model for evaluation of soil fertility and fertilizer effect was made by giving the estimate coefficient for each quantitative index and for each group of qualitative index significantly selected by MLR. Estimation for soil fertility factors and fertilizer effects by independent variables was better by MLR than single regression showing gradually improvement by adding chemical properties, quantitative indexes and qualitative indexes of GIS. Consequently, it is assumed that this approach by MLR with quantitative and qualitative indexes was available as an evaluation model of soil fertility and recommendation of optimum fertilization for tobacco field.
The calibration equations for Brix value determination of intact mango were developed using the NIR spectra in a short wavelength region from 700 to 1100 nm. Multiple linear regression (MLR) and partial least square regression (PLS) was used for the calibration. It was found that the best wavelength region for PLS calibration from 900 to 1000 nm was similar to the wavelength region selected by MLR from 906 nm to 996 nm. Both MLR and selected region PLS provided sufficiently accurate prediction equations for Brix determination of intact mango. For MLR, the prediction results were SEP = 0.45 Brix and Bias = -0.04 Brix while PLS prediction results were SEP : 0.46 Brix and Bias = -0.2 Brix. It was concluded that MLR and PLS would have similar abilities in making calibration equation for Brix determination of intact mango if the appropriate wavelengths or wavelength region were selected. The appropriate wavelength region for PLS regression could be assumed by using the wavelength region selected by MLR in place of random selection, The relationship between calibration results of MLR and PLS regression is discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.